**ISCA 2021** 



### Dvé: Improving DRAM Reliability and Performance On-Demand via Coherent Replication

### Adarsh Patil,

### Vijay Nagarajan, Rajeev Balasubramonian, Nicolai Oswald









## Outline



Performance gains

**On-demand Reliability** 



## Outline





On-demand Reliability



### Increasing DRAM Faults

NEWS

Bloomberg

#### Markets

R

#### How One Piece of Hardware Took Down a \$6 Trillion Stock Market

By <u>Gearoid Reidy, Shoko Oda, Min Jeong Lee</u>, and <u>Toshiro Hasegawa</u> 2 October 2020, 10:47 BST *Updated on 5 October 2020, 01:48 BST* 

That all changed on Thursday, when a piece of hardware called the No. 1 shared disk device, one of two square-shaped data-storage boxes, detected a memory error. These devices store management data used across the servers, and distribute information such as commands and ID and password combinations for terminals that monitor trades.



#### RAMBleed Reading Bits in Memory Without Accessing Them

RAMBleed is a side-channel attack that enables an attacker to read out physical memory belonging to other processes. The implications of violating

### VUSec Q

#### ECCPLOIT: ECC MEMORY VULNERABLE TO ROWHAMMER ATTACKS AFTER ALL

Where many people thought that high-end servers were safe from the (unpatchable) <u>Rowhammer</u> bitflip



Google: DRAM error rates vastly higher

PCs will likely require error correction code in the

Senior Reporter, Computerworld | 8 OCTOBER 2009 23:51 GMT

than previously thought

future due to DRAM issues

By Lucas Mearian

🖪 💟 🛅 🌀 🖂 🕞

#### Wet Q MENU L. UK

#### DRAM error rates: Nightmare on DIMM street

A two-and-a-half year study of DRAM on 10s of thousands Google servers found DIMM error rates are hundreds to thousands of times higher than thought -- a mean of 3,751 correctable errors per DIMM per year.This is the world's first large-scale study of RAM errors in the field.

#### 🔍 in 🖬 f 🎐 🖬 🌲



#### Wet Q MENU L. UK

#### DRAM errors: from soft to hard

Every system uses dynamic random access memory (DRAM), but how good is it? Bad news: not nearly as good as vendors would like us to think. Good news: we're learning.

#### 🔍 in 🖬 f У 🖬 🗍

























# **Replication for Reliability**





# **Replication for Reliability**







# **Replication for Reliability**







# Replication for Reliability





#### Dvé insights

- □ Full data replica (not ECC code)
- □ Keep Replicas as far apart and disjoint as possible
- Tolerate errors arising from anywhere in the memory path

#### For Detection

- **Existing ECC, CRC, Parity**
- □ Strong detection-only code
- Other diagnostic capabilities

For Correction Rely on replica



# **Replication for Reliability**





#### Dvé insights

- □ Full data replica (not ECC code)
- □ Keep Replicas as far apart and disjoint as possible
- Tolerate errors arising from anywhere in the memory path

For Detection

- **Existing ECC, CRC, Parity**
- □ Strong detection-only code
- Other diagnostic capabilities

For Correction Rely on replica



# Quantifying Reliability (Onus Probandi)

Analytical Modelling

R

- Device FIT rate: 66.1 [Sridharan et. al., SC '12]
- Error rates: DUE and SDC
- Equipped with same detection scheme

#### **Comparison Points**

| Chipkill:<br>(SSC-DSD ECC code)                        | guarantees recovery from 1 DRAM chip failure in a rank |
|--------------------------------------------------------|--------------------------------------------------------|
| IBM RAIM:<br>(RAID-3 across 5 channels)                | guarantees recovery from 1 channel failure             |
| Intel Memory Mirroring:<br>(channel-level replication) | guarantees recovery from 1 channel failure             |



# Quantifying Reliability (Onus Probandi)

#### **Key Results**

| Comparison against                                                          | DUE Rate Improvement | SDC Rate Improvement |
|-----------------------------------------------------------------------------|----------------------|----------------------|
| Chipkill<br>(Dvé equipped with TSD)                                         | 4x                   | ~10 <sup>6</sup> x   |
| IBM RAIM<br>(Dvé equipped with Chipkill)                                    | 172x                 | 0.63x                |
| Intel Mirroring<br>(Dvé equipped with TSD +<br>temperature scaled FIT rate) | 11%                  | 1x                   |



# Quantifying Reliability (Onus Probandi)

#### Intuition

R

- "k-out-of-n" model systems vs "parallel n" model system
- Bottom-up vs Top-down design
- Lower bound analysis







## Outline





On-demand Reliability



































Allow-based
 Deny-based



# Performance Eval (Onus Probandi)

Simulation

- SynchroTrace driven gem5 [TACO 2018]
- Processor: 2-socket, 8 core/socket
- Caches: L1 (private per core, 64KB), L2 (shared per socket, 8MB)
- Memory: 2 × 8GB DDR4-2400Mhz
- Coherence Protocol: Hierarchical MOESI (intra-socket), MOSI (inter-socket)
- Interconnect: Inter-socket point-to-point (50ns), intra-socket mesh

#### Benchmarks

- OpenMP and Pthreads based multithreaded workloads
- 7 benchmark suites NAS PB, Parboil, Rodinia, PARSEC, SPLASH-2x, SPEC 2017, HPC (assorted)

#### **Comparison Points**

- Baseline NUMA: requests routed to node where data is housed
- Intel Memory Mirroring++ (hypothetical): load balances reads between mirrored channels







## Outline





**On-demand Reliability** 











Skewed memory utilization

□ 50% of the memory is idle in 90% of the servers

□ Provisioning for peak







Dvé insights

Utilize idle memory

• Overheads applicable only as and when demanded by the application

Skewed memory utilization □ 50% of the memory is idle 90% of the time Provisioning for peak

Interface to allocate high-reliability memory □ Hardware-software co-design □ OS support







#### Dvé insights

- Utilize idle memory
- Overheads applicable only as and when demanded by the application

Skewed memory utilization50% of the memory is idle 90% of the timeProvisioning for peak

Interface to allocate high-reliability memory
Hardware-software co-design
OS support

#### Flexible trade-off between capacity and reliability



# On-demand Replication (Onus Probandi)

#### Mapping physical address ↔ replica physical address

• Mapping replica page pairs



OS creates page pairs in replica map table (RMT) Single system-wide RMT to create/destroy replica page pairs Hardware-walked RMT at directory controller



- Carving/managing space required for replication Estimate maximum DRAM resident set size Steal memory using balloon drivers Monitor page fault rate for thresholds Modular design allows fallback to baseline reliability
- When should replication enabled or disabled?



Notification from Control Plane (managed as a soft-setting) Several configurations possible: per-VM, per-container, kernel-only explicitly specified by application at malloc



System wide Replication Entire memory space replica Fixed function mapping



## Summary



# Replication for reliability

Lowers DUE by

4x over Chipkill 172x over IBM RAIM 11% over Intel Memory Mirroring



hardware-software co-design using OS/compiler support



Improves performance by

5% - 117% over baseline NUMA3% - 107% over an improvedIntel mirroring scheme



#### Artifacts available

https://github.com/adarshpatil/dve https://adar.sh/dve