
Āpta: Fault-tolerant object-granular CXL disaggregated
memory for accelerating FaaS

Vijay Nagarajan Nikos Nikoleris Nicolai Oswald

DSN 2023

Adarsh Patil

Function-as-a-Service or “Serverless”

FaaS

Function-as-a-Service or “Serverless”

FaaS

Value add

Utilization

Separation of
 concerns

EfficiencyScalability

Pay for usage

Productivity

On-demand

Developer Provider

Function-as-a-Service or “Serverless”

FaaS

Value add

Utilization

Separation of
 concerns

EfficiencyScalability

Pay for usage

Productivity

On-demand

Developer Provider

FaaS applications

sentiment_analysis

read_csv

write_to_dbpublish_to_sns

• State machine workflow of stateless functions

FaaS applications

sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

• State machine workflow of stateless functions

• Cloud provider dynamically orchestrates and
schedules functions on a fleet of compute servers

parsed_reviews

• State machine workflow of stateless functions

• Cloud provider dynamically orchestrates and
schedules functions on a fleet of compute servers

• State maintained externally as objects in a
remote data store

FaaS applications

sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

parsed_reviews

• State machine workflow of stateless functions

• Cloud provider dynamically orchestrates and
schedules functions on a fleet of compute servers

• State maintained externally as objects in a
remote data store

× Splitting state-compute adds communication overheads

How much?

FaaS applications

sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

Quantifying communication overheads

• Functions from FunctionBench and SeBS benchmark suites

• Compute - Optimized with Intel OneAPI, run on 16-core Skylake CPUs

• Communication - Amazon S3 object store (median of 100 executions)

96% of execution time is spent
in retrieving data from S3

parsed_reviews

Inefficiency of FaaS applications

sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

• State machine workflow of stateless functions

• Cloud provider dynamically orchestrates and
schedules functions on a fleet of compute servers

• State maintained externally as objects in a
remote data store

× Splitting state-compute adds communication overheads

× Communication overheads severely limit performance

Can we do better?

• High-performance in-memory object store

• One-sided RDMA verbs to read/write objects

• Infiniband network (Mellanox ConnectX-3 NIC on PCIe-gen3 x16)

•

Can we do better?

51% of execution time is spent in
retrieving data from object store

The problem: Communication overheads

“The two most expensive operations in terms of
cost were the orchestration workflow and when
data passed between distributed components. ”

Object-granular CXL disaggregated memory

Āpta architecture

Object-granular CXL disaggregated memory

Āpta architecture

Pooled + shared memory on
centralized memory server

Hardware load/store interface

Specialized controllers for
data plane operations

Low-power SoC for
control plane operations

Fig: Āpta system schematic

Cache data from
remote memory

With disaggregated memory - OpenCAPI-like access latency / bandwidth†

13% communication overheads (Recall 51% for RDMA-based object store)

Performance potential of Āpta

2x over
RDMA object store

59x over S3

† ThymesisFlow [MICRO 20]

With object caching at compute server

Performance potential of Āpta

2.3x over
RDMA object store

With object caching at compute server

Performance potential of Āpta

2.3x over
RDMA object store

Our target!

• Enforcing strong consistency in presence of caching

The CXL.mem coherence

• Enforcing strong consistency in presence of caching

The CXL.mem coherence

parsed_reviews sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

• Enforcing strong consistency in presence of caching
CXL 3.0 inter-node coherence protocol
Enforces SWMR invariant

The CXL.mem coherence

parsed_reviews sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

• Enforcing strong consistency in presence of caching
CXL 3.0 Inter-node coherence protocol
Enforces SWMR invariant

The CXL.mem coherence

sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

Mem C1 C2 C3

I -> S

MemRd

• Enforcing strong consistency in presence of caching
CXL 3.0 Inter-node coherence protocol
Enforces SWMR invariant

The CXL.mem coherence

Mem C1 C2 C3

I -> S

I -> S

sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

• Enforcing strong consistency in presence of caching
CXL 3.0 Inter-node coherence protocol
Enforces SWMR invariant

The CXL.mem coherence

Mem C1 C2 C3

I -> S

I -> S

S -> I

parsed_reviews sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

MemRd

• Enforcing strong consistency in presence of caching
CXL 3.0 Inter-node coherence protocol
Enforces SWMR invariant

The CXL.mem coherence

Mem C1 C2 C3

I -> S

I -> S

S -> I

I -> S

parsed_reviews sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

MemRd

MemRd

• The fault tolerance problem

Compute server failures

The need for fault-tolerant coherence

• The fault tolerance problem

Compute server failures

The need for fault-tolerant coherence

Mem C1 C2 C3

I -> S

I -> S

S -> I

parsed_reviews sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

MemRd

• The fault tolerance problem

Compute server failures – blocking

The need for fault-tolerant coherence

Mem C1 C2 C3

I -> S

I -> S

S -> I

parsed_reviews sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

MemRd

• The fault tolerance problem

Compute server failures – blocking
Network congestions – high tail latency

The need for fault-tolerant coherence

Mem C1 C2 C3

I -> S

I -> S

S -> I

parsed_reviews sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

MemRd

• Invalidation in critical path of write => Writes block when compute servers fail

Key Problem – CXL not fault-tolerant!

parsed_reviews sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

Mem C1 C2 C3

I -> S

I -> S

S -> I

MemRd

• Invalidation in critical path of write => Writes block when compute servers fail

• Insufficient RAS capabilities in CXL specification

Key Problem – CXL not fault-tolerant!

parsed_reviews sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

Mem C1 C2 C3

I -> S

I -> S

S -> I

MemRd

• Invalidation in critical path of write => Writes block when compute servers fail

• Insufficient RAS capabilities in CXL specification

• FaaS embraces fault-tolerance => CXL must likewise

Key Problem – CXL not fault-tolerant!

parsed_reviews sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

Mem C1 C2 C3

I -> S

I -> S

S -> I

MemRd

i. Lazy invalidation policy

ii. Coherence-aware function scheduling

Āpta: Fault-tolerant Coherence Protocol

i. Lazy invalidation policy
Write is acknowledged immediately

Invalidation messages are sent asynchronously and tracked

Āpta: Fault-tolerant Coherence Protocol

parsed_reviews sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

Mem C1 C2 C3

I -> S

I -> S

S -> I
Pending-inv

C1

MemRd

ii. Coherence-aware function scheduling
Never schedules function invocations on servers with pending
invalidation-acknowlegements

Āpta: Fault-tolerant Coherence Protocol

parsed_reviews sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C1

parsed_reviews

Mem C1 C2 C3

I -> S

I -> S

S -> I
Pending-inv

C1

C3

MemRd

Strong consistency + Availability

✓ Lazy linearizability
 Lazy invalidation protocol + Coherence-aware scheduling

✓ Fault-tolerant operation
 Resilient to failure of compute server

✓ Provides line-rate coherence
 Enables deployment on DPUs / SmartNIC / ToR switches

Āpta: Fault-tolerant Coherence Protocol

a) CXL disaggregated memory-based object store
 Extended shmem IPC
 Defines a caching policy k cache-line loads
 Locality-aware scheduling Transaction atomic durability

b) Fault-tolerant coherence protocol
 Tailored coherence protocol
 Lazy Invalidation of sharers and coherence-aware scheduling

c) Object-granular disaggregated memory
 Bulk cache-line loads
 Transactional atomic durability

Āpta’s design

This talk

Realizing Āpta’s design

Object-granular CXL disaggregated memory

Fig: Āpta system schematic

Specialized controllers for
data plane operations

(b) Fault-tolerant coherence

Object Tracking Controller

Directory for the coherence
protocol

Object Invalidation Controller

Reverse address translation +
tracks invalidation-acks

(c) Object-granular disaggregated mem

Object Serving Controller

Address translation + bulk cache
line response

Object Persistence Controller

Persists entire object atomically
using one-phase commit

Realizing Āpta’s design

OSC

OPC

OTC

OIC

Custom trace-driven gem5 simulation
• Prism traces † annotated with phase of execution
• 3 compute servers, 1 disaggregated memory server
• Compute server: single socket 3GHz, per-core L1, shared L2, 2 x 8GB DDR4
• Memory server: 2 x 8GB DDR4, modelled controllers (OTC, OIC, OPC, OSC)
• Coherence Protocol: MOESI (intra-server), Āpta (inter-server)
• Interconnect: point-to-point (500ns, 80bps), full-duplex

Benchmarks
• Full FaaS applications - 6 workflows, 27 functions
• Different domains, communication patterns, realistic scheduling decisions
• Applications from AWS use cases and serverless frameworks (numpywren, THIS)

PHI data, Sentiment analysis, FINRA, Video transcode, Image prediction, Serverless GEMM

Performance Evaluation

† SynchroTrace, ISPASS ‘15

Performance Evaluation

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Sp
ee

d
u

p

(H
ig

h
er

 is
 b

et
te

r)

Āpta RDMA + Faa$t RDMA_f + Faa$t CXL uncached

RDMA

Apta performs
85% 42% 31% 24%

better

Āpta Summary

Fault-tolerant
coherence protocol

Accelerating
function-as-a-service

Protocol verified in Murφ model checker
32% lower standard deviation of exec time

40% – 142% over RDMA
21% – 90% over RDMA + caching
15% – 42% over un-cached CXL

Artifacts availableObject-granular
Disaggregated Memory

https://github.com/adarshpatil/apta
https://adar.sh/apta

Shared memory IPC
Bulk cache-line loads

Transaction atomic durability

#OpenToWork @adarshpatil

	Slide 1: Āpta: Fault-tolerant object-granular CXL disaggregated memory for accelerating FaaS
	Slide 2: Function-as-a-Service or “Serverless”
	Slide 3: Function-as-a-Service or “Serverless”
	Slide 4: Function-as-a-Service or “Serverless”
	Slide 5: FaaS applications
	Slide 6: FaaS applications
	Slide 7: FaaS applications
	Slide 8: FaaS applications
	Slide 9: Quantifying communication overheads
	Slide 10: Inefficiency of FaaS applications
	Slide 11: Can we do better?
	Slide 12: The problem: Communication overheads
	Slide 13: Āpta architecture
	Slide 14: Āpta architecture
	Slide 15: Performance potential of Āpta
	Slide 16: Performance potential of Āpta
	Slide 17: Performance potential of Āpta
	Slide 18: The CXL.mem coherence
	Slide 19: The CXL.mem coherence
	Slide 20: The CXL.mem coherence
	Slide 21: The CXL.mem coherence
	Slide 22: The CXL.mem coherence
	Slide 23: The CXL.mem coherence
	Slide 24: The CXL.mem coherence
	Slide 25: The need for fault-tolerant coherence
	Slide 26: The need for fault-tolerant coherence
	Slide 27: The need for fault-tolerant coherence
	Slide 28: The need for fault-tolerant coherence
	Slide 29: Key Problem – CXL not fault-tolerant!
	Slide 30: Key Problem – CXL not fault-tolerant!
	Slide 31: Key Problem – CXL not fault-tolerant!
	Slide 32: Āpta: Fault-tolerant Coherence Protocol
	Slide 33: Āpta: Fault-tolerant Coherence Protocol
	Slide 34: Āpta: Fault-tolerant Coherence Protocol
	Slide 35: Āpta: Fault-tolerant Coherence Protocol
	Slide 36: Āpta’s design
	Slide 37: Realizing Āpta’s design
	Slide 38: Realizing Āpta’s design
	Slide 39: Performance Evaluation
	Slide 41: Performance Evaluation
	Slide 42: Āpta Summary

