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• State machine workflow of stateless functions

• Cloud provider dynamically orchestrates and 
schedules functions on a fleet of compute servers

• State maintained externally as objects in a
remote data store

× Splitting state-compute adds communication overheads

How much?
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Quantifying communication overheads

• Functions from FunctionBench and SeBS benchmark suites

• Compute - Optimized with Intel OneAPI, run on 16-core Skylake CPUs

• Communication - Amazon S3 object store (median of 100 executions)

96% of execution time is spent 
in retrieving data from S3
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• State machine workflow of stateless functions

• Cloud provider dynamically orchestrates and 
schedules functions on a fleet of compute servers

• State maintained externally as objects in a
remote data store

× Splitting state-compute adds communication overheads

× Communication overheads severely limit performance

Can we do better?



• High-performance in-memory object store

• One-sided RDMA verbs to read/write objects

• Infiniband network (Mellanox ConnectX-3 NIC on PCIe-gen3 x16)

•  

Can we do better?

51% of execution time is spent in 
retrieving data from object store



The problem: Communication overheads

“The two most expensive operations in terms of 
cost were the orchestration workflow and when 
data passed between distributed components. ” 



Object-granular CXL disaggregated memory 

Āpta architecture



Object-granular CXL disaggregated memory 

Āpta architecture

Pooled + shared memory on 
centralized memory server

Hardware load/store interface

Specialized controllers for 
data plane operations

Low-power SoC for 
control plane operations

Fig: Āpta system schematic

Cache data from 
remote memory



With disaggregated memory - OpenCAPI-like access latency / bandwidth†

13% communication overheads (Recall 51% for RDMA-based object store)

Performance potential of Āpta 

2x over 
RDMA object store

59x over S3

† ThymesisFlow [MICRO 20]
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With object caching at compute server

Performance potential of Āpta 

2.3x over 
RDMA object store

Our target!
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• The fault tolerance problem

Compute server failures – blocking
Network congestions – high tail latency

The need for fault-tolerant coherence
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• Invalidation in critical path of write => Writes block when compute servers fail

Key Problem – CXL not fault-tolerant!
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• Invalidation in critical path of write => Writes block when compute servers fail

• Insufficient RAS capabilities in CXL specification

• FaaS embraces fault-tolerance => CXL must likewise

Key Problem – CXL not fault-tolerant!
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i. Lazy invalidation policy 

ii. Coherence-aware function scheduling

Āpta: Fault-tolerant Coherence Protocol



i. Lazy invalidation policy 
Write is acknowledged immediately

Invalidation messages are sent asynchronously and tracked

Āpta: Fault-tolerant Coherence Protocol
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ii. Coherence-aware function scheduling 
Never schedules function invocations on servers with pending 
invalidation-acknowlegements

Āpta: Fault-tolerant Coherence Protocol
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Strong consistency + Availability

✓ Lazy linearizability 
 Lazy invalidation protocol + Coherence-aware scheduling 

✓ Fault-tolerant operation
 Resilient to failure of compute server 

✓ Provides line-rate coherence
  Enables deployment on DPUs / SmartNIC / ToR switches

Āpta: Fault-tolerant Coherence Protocol



a) CXL disaggregated memory-based object store
 Extended shmem IPC
      Defines a caching policy k cache-line loads
 Locality-aware scheduling Transaction atomic durability

b) Fault-tolerant coherence protocol
      Tailored coherence protocol
      Lazy Invalidation of sharers and coherence-aware scheduling 

c) Object-granular disaggregated memory
       Bulk cache-line loads
       Transactional atomic durability

Āpta’s design

This talk



Realizing Āpta’s design

Object-granular CXL disaggregated memory 

Fig: Āpta system schematic

Specialized controllers for 
data plane operations



(b) Fault-tolerant coherence

Object Tracking Controller

Directory for the coherence 
protocol

Object Invalidation Controller

Reverse address translation + 
tracks invalidation-acks

(c) Object-granular disaggregated mem

Object Serving Controller

Address translation + bulk cache 
line response

Object Persistence Controller

Persists entire object atomically 
using one-phase commit

Realizing Āpta’s design
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Custom trace-driven gem5 simulation
• Prism traces † annotated with phase of execution
• 3 compute servers, 1 disaggregated memory server 
• Compute server: single socket 3GHz, per-core L1, shared L2, 2 x 8GB DDR4
• Memory server: 2 x 8GB DDR4, modelled controllers (OTC, OIC, OPC, OSC)
• Coherence Protocol: MOESI (intra-server), Āpta (inter-server)
• Interconnect: point-to-point (500ns, 80bps), full-duplex

Benchmarks
• Full FaaS applications - 6 workflows, 27 functions
• Different domains, communication patterns, realistic scheduling decisions
• Applications from AWS use cases and serverless frameworks (numpywren, THIS)

PHI data, Sentiment analysis, FINRA, Video transcode, Image prediction, Serverless GEMM

Performance Evaluation

† SynchroTrace, ISPASS ‘15



Performance Evaluation
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Āpta Summary

Fault-tolerant 
coherence protocol

Accelerating 
function-as-a-service

Protocol verified in Murφ model checker
32% lower standard deviation of exec time

40% – 142% over RDMA
21% – 90% over RDMA + caching
15% – 42% over un-cached CXL

Artifacts availableObject-granular
Disaggregated Memory

https://github.com/adarshpatil/apta
https://adar.sh/apta

Shared memory IPC
Bulk cache-line loads

Transaction atomic durability

#OpenToWork @adarshpatil
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