
Co-designing reliability and performance
for datacenter memory

Adarsh Patil

Doctoral Examination

30th May 2023

Advisor:
 Vijay Nagarajan (UoE)
Co-examiners:
 Vilas Sridharan (AMD)
 Antonio Barbalace (UoE)

(2012–14) Datacenter Infra Team – Virtualization & Linux Engineering
solutions architect: platform benchmarking, performance analysis

(2014–17) Masters by Research – HAShCache [TACO ‘18], TLB reach [arXiv]
memory architecture: DRAM cache, heterogeneous SoCs, virtual mem [Advisor: Prof. R. Govindarajan]

(2017–19) Research Scientist – HPC ecosystem and applications team
application understanding: s/w optimization, h/w architecture for next gen

(2019–now) – Co-designing reliability and performance for the datacenter
holistic approach: integrating hardware + application

About me: My journey so far…

Memory – a perpetual conundrum!

latency

bandwidth

reliabilitycapacity

cost

SRAM SDRAM Remote DRAM

Memory – a perpetual conundrum!

latency

bandwidth

reliabilitycapacity

cost

SRAM SDRAM Remote DRAM

cachesregisters

Stacked
DRAM

DDR
DRAM

Dis-
aggrega

ted
Mem

NUMA

NVM Swap

latency

bandwidth

reliabilitycapacity

cost

SRAM SDRAM Remote DRAM Objective

Thesis objective

cachesregisters

Stacked
DRAM

DDR
DRAM

Dis-
aggrega

ted
Mem

NUMA

NVM Swap

High-performance, high-reliability memory

Datacenter memory

Datacenter memory

NUMA

Datacenter memory

NUMA

Disaggregated memory

Main memory is comprised of DRAMs

Shared main memory

NUMA

Disaggregated memory

Pervasive coherence protocols

NUMA

Disaggregated memory

Pervasive coherence protocols

Intra-processor coherence

NUMA

Disaggregated memory

Pervasive coherence protocols

Intra-processor coherence

Inter-processor coherence

NUMA

Disaggregated memory

Pervasive coherence protocols

Intra-processor coherence

Inter-processor coherence

Inter-server coherence

NUMA

Disaggregated memory

Thesis insights and contributions

Employ coherence protocols to improve reliability
and performance of DRAM memory [ISCA ‘21]

Thesis insights and contributions

Employ coherence protocols to improve reliability
and performance of DRAM memory [ISCA ‘21]

Harden the coherence protocols against common
modes of failures [DSN ‘23]

Thesis insights and contributions

Improving DRAM Reliability and Performance

The problem: Increasing DRAM Faults

Progression of Reliability Mechanisms

Memory
Controller

Channel

DIMM

Rank

Chip

Bank

DRAM
Array

Cell

Progression of Reliability Mechanisms

Memory
Controller

Channel

DIMM

Rank

Chip

Bank

DRAM
Array

Cell SECDED ECC, in-DRAM ECC

Row/column sparing

Progression of Reliability Mechanisms

Memory
Controller

Channel

DIMM

Rank

Chip

Bank

DRAM
Array

Cell

Chipkill ECC / Multi-tier ECC

SECDED ECC, in-DRAM ECC

Row/column sparing

Progression of Reliability Mechanisms

Memory
Controller

Channel

DIMM

Rank

Chip

Bank

DRAM
Array

Cell SECDED ECC, in-DRAM ECC

Row/column sparing

Chipkill ECC / Multi-tier ECC

IBM RAIM, Intel Memory Mirroring

Progression of Reliability Mechanisms

Memory
Controller

Channel

DIMM

Rank

Chip

Bank

DRAM
Array

Cell SECDED ECC, in-DRAM ECC

Row/column sparing

Chipkill ECC / Multi-tier ECC

IBM RAIM, Intel Memory Mirroring

Performance overheads

Replication for Reliability

Dvé insights
❑ Full data replica (not ECC code)
❑ Keep Replicas as far apart and disjoint as possible
❑ Tolerate errors arising from anywhere in the

memory path

Replication for Reliability

Dvé insights
❑ Full data replica (not ECC code)
❑ Keep Replicas as far apart and disjoint as possible
❑ Tolerate errors arising from anywhere in the

memory path

X, Y, Z A, B, C

Coherent

interconnect

Replication for Reliability

Dvé insights
❑ Full data replica (not ECC code)
❑ Keep Replicas as far apart and disjoint as possible
❑ Tolerate errors arising from anywhere in the

memory pathReplicas

X, Y, Z

X, Y, ZA, B, C

A, B, C

Coherent

interconnect

Replication for Reliability

Dvé insights
❑ Full data replica (not ECC code)
❑ Keep Replicas as far apart and disjoint as possible
❑ Tolerate errors arising from anywhere in the

memory path

For Detection
❑ Existing ECC, CRC, Parity
❑ Strong detection-only code
❑ Other diagnostic capabilities

For Correction
❑ Rely on replica

Replication for Reliability

Memory
Controller

Channel

DIMM

Rank

Chip

Bank

Array

Cel l

Dvé

Dvé insights
❑ Full data replica (not ECC code)
❑ Keep Replicas as far apart and disjoint as possible
❑ Tolerate errors arising from anywhere in the

memory path

For Detection
❑ Existing ECC, CRC, Parity
❑ Strong detection-only code
❑ Other diagnostic capabilities

For Correction
❑ Rely on replica

Coherent Replication for Performance

Dvé insights
❑ Use replica to improve performance

Coherent Replication

Dvé insights
❑ Use replica to improve performance

X, Y, Z A, B, C

Coherent

interconnect

A

Coherent Replication

Dvé insights
❑ Use replica to improve performance
❑ Route memory requests to nearest replica

X, Y, Z A, B, C

Coherent

interconnect

A

X, Y, ZA, B, C
Replicas

Coherent Replication

Dvé insights
❑ Use replica to improve performance
❑ Route memory requests to nearest replica
❑ Ensure safe access to replica

X, Y, Z A, B, C

Coherent

interconnect

X, Y, ZA, B, C
Replicas

A

A

write(A)

Coherent Replication

Dvé insights
❑ Use replica to improve performance
❑ Route memory requests to nearest replica
❑ Ensure safe access to replica

X, Y, Z A, B, C

Coherent

interconnect

X, Y, ZA, B, C
Replicas

A

A

Coherent Replication

Dvé insights
❑ Use replica to improve performance
❑ Route memory requests to nearest replica
❑ Ensure safe access to replica

X, Y, Z A, B, C

Coherent

interconnect

X, Y, ZA, B, C
Replicas

Replica Dir Ctrl

A

Coherent Replication

Dvé insights
❑ Use replica to improve performance
❑ Route memory requests to nearest replica
❑ Ensure safe access to replica

Coherent Replication
❑ Builds on existing cache coherence protocols
❑ maintain the replicas in sync (for reliability)
❑ provide coherent access to both replicas during

fault-free operation (for performance)

X, Y, Z A, B, C

Coherent

interconnect

X, Y, ZA, B, C
Replicas

Replica Dir Ctrl

A

Coherent Replication

Dvé insights
❑ Use replica to improve performance
❑ Route memory requests to nearest replica
❑ Ensure safe access to replica

Coherent Replication
❑ Builds on existing cache coherence protocols
❑ maintain the replicas in sync (for reliability)
❑ provide coherent access to both replicas during

fault-free operation (for performance)

Mechanisms
❑ Allow-based
❑ Deny-based

X, Y, Z A, B, C

Coherent

interconnect

X, Y, ZA, B, C
Replicas

A

Replica Dir Ctrl

Capacity overheads?

Reliability
Performance

Capacity

Capacity overheads?

Dvé insights
❑ Utilize idle memory

Skewed memory utilization
❑ 50% of the memory is idle in 90% of the servers
❑ Provisioning for peak

Reliability
Performance

Capacity

Capacity overheads?

Dvé insights
❑ Utilize idle memory
❑ Overheads applicable only as and when

demanded by the application

Skewed memory utilization
❑ 50% of the memory is idle 90% of the servers
❑ Provisioning for peak

Interface to allocate high-reliability memory
❑ Hardware-software co-design
❑ OS support

Reliability
Performance

Capacity

Capacity overheads?

Dvé insights
❑ Utilize idle memory
❑ Overheads applicable only as and when

demanded by the application

Skewed memory utilization
❑ 50% of the memory is idle 90% of the time
❑ Provisioning for peak

Interface to allocate high-reliability memory
❑ Hardware-software co-design
❑ OS support

Flexible trade-off between capacity and reliability

Capacity
Reliability

Performance

Summary

Replication for
Reliability

Coherent Replication
for Performance

Lowers DUE by

4x over Chipkill
172x over IBM RAIM

11% over Intel Memory Mirroring

Improves performance by

5% - 117% over baseline NUMA
3% - 107% over an improved

Intel mirroring scheme

On-demand Replication Artifacts available

hardware-software co-design
using OS/compiler support

https://github.com/adarshpatil/dve
https://adar.sh/dve

https://github.com/adarshpatil/dve
https://adar.sh/dve

Thesis insights and contributions

Fault-tolerant disaggregated memory for accelerating FaaS

“Serverless” Function-as-a-Service

FaaS

“Serverless” Function-as-a-Service

FaaS

Scalability

Elasticity

Productivity

Efficiency Lower TCO

Faster time
to market

Simplicity

Modularity

FaaS applications

sentiment_analysis

read_csv

write_to_dbpublish_to_sns

• State machine workflow of stateless functions

FaaS applications

sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

• State machine workflow of stateless functions

• Cloud provider dynamically orchestrates and
schedules functions on a fleet of compute servers

parsed_reviews

• State machine workflow of stateless functions

• Cloud provider dynamically orchestrates and
schedules functions on a fleet of compute servers

• State maintained externally as objects in a
remote data store

Inefficiency of FaaS applications

sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

parsed_reviews

• State machine workflow of stateless functions

• Cloud provider dynamically orchestrates and
schedules functions on a fleet of compute servers

• State maintained externally as objects in a
remote data store

× Splitting state-compute adds communication overheads

How much?

Inefficiency of FaaS applications

sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

Quantifying communication overheads

• Functions from FunctionBench and SeBS benchmark suites

• Compute - Optimized with Intel OneAPI, run on 16-core Skylake CPUs

• Communication - Amazon S3 object store (median of 100 executions)

96% of execution time is spent
in retrieving data from S3

parsed_reviews

Inefficiency of FaaS applications

sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

• State machine workflow of stateless functions

• Cloud provider dynamically orchestrates and
schedules functions on a fleet of compute servers

• State maintained externally as objects in a
remote data store

× Splitting state-compute adds communication overheads

× Communication overheads severely limit performance

Can we do better?

• High-performance in-memory object store

• One-sided RDMA verbs to read/write objects

• Infiniband network (Mellanox ConnectX-3 NIC on PCIe-gen3 x16)

•

Can we do better?

51% of execution time is spent in
retrieving data from object store

The problem: Data communication

“The two most expensive operations in terms of
cost were the orchestration workflow and when
data passed between distributed components. ”

Object-granular CXL disaggregated memory

Performance potential for Āpta

Object-granular CXL disaggregated memory

Performance potential for Āpta

Pooled + shared memory on
centralized memory server

Hardware load/store interface
Cache-able memory

Specialized controllers for
data plane operations

Low-power SoC for
control plane operations

Fig: Āpta system schematic

With OpenCAPI-like access latency / bandwidth for DM†

13% communication overheads (Recall 51% for RDMA-based object store)

Performance potential for Āpta

2x over
RDMA object store

59x over S3

† ThymesisFlow [MICRO 20]

Object caching at compute server

Performance potential for Āpta

2.3x over
RDMA object store

Object caching at compute server

Performance potential for Āpta

2.3x over
RDMA object store

Our target!

• Enforcing strong consistency in presence of caching

The CXL.mem coherence

• Enforcing strong consistency in presence of caching

The CXL.mem coherence

parsed_reviews sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

• Enforcing strong consistency in presence of caching
CXL 3.0 inter-node coherence protocol
Enforces SWMR invariant

The CXL.mem coherence

parsed_reviews sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

• Enforcing strong consistency in presence of caching
CXL 3.0 Inter-node coherence protocol
Enforces SWMR invariant

The CXL.mem coherence

sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

Mem C1 C2 C3

I -> S

MemRd

• Enforcing strong consistency in presence of caching
Inter-node coherence protocol
CXL 3.0 protocols enforce SWMR invariant

The CXL.mem coherence

Mem C1 C2 C3

I -> S

I -> S

sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

• Enforcing strong consistency in presence of caching
Inter-node coherence protocol
CXL 3.0 enforce SWMR invariant

The CXL.mem coherence

Mem C1 C2 C3

I -> S

I -> S

S -> I

parsed_reviews sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

MemRd

• Enforcing strong consistency in presence of caching
Inter-node coherence protocol
CXL 3.0 enforce SWMR invariant

The CXL.mem coherence

Mem C1 C2 C3

I -> S

I -> S

S -> I

I -> S

parsed_reviews sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

MemRd

MemRd

• The fault tolerance problem

Compute server failures

The need for fault-tolerant coherence

• The fault tolerance problem

Compute server failures

The need for fault-tolerant coherence

Mem C1 C2 C3

I -> S

I -> S

S -> I

parsed_reviews sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

MemRd

• The fault tolerance problem

Compute server failures – blocking

The need for fault-tolerant coherence

Mem C1 C2 C3

I -> S

I -> S

S -> I

parsed_reviews sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

MemRd

• The fault tolerance problem

Compute server failures – blocking
Network congestions – high tail latency

The need for fault-tolerant coherence

Mem C1 C2 C3

I -> S

I -> S

S -> I

parsed_reviews sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

MemRd

• Invalidations are in the critical path of a write

Key Problem

parsed_reviews sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

Mem C1 C2 C3

I -> S

I -> S

S -> I

MemRd

i. Lazy invalidation policy
Write is acknowledged immediately

Invalidation messages are sent asynchronously and tracked

Āpta: Fault-tolerant Coherence Protocol

parsed_reviews sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

Mem C1 C2 C3

I -> S

I -> S

S -> I
Pending-inv

C1

MemRd

ii. Coherence-aware function scheduling
Never schedules function invocations on servers with pending
invalidation-acknowlegements

Āpta: Fault-tolerant Coherence Protocol

parsed_reviews sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C1

parsed_reviews

Mem C1 C2 C3

I -> S

I -> S

S -> I
Pending-inv

C1

C3

MemRd

Lazy linearizability (Lazy invalidation policy + Coherence-aware scheduling)

Āpta: Fault-tolerant Coherence Protocol

Lazy linearizability (Lazy invalidation policy + Coherence-aware scheduling)

Ensures compute server fault-tolerant operation

Āpta: Fault-tolerant Coherence Protocol

parsed_reviews sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

Mem C1 C2 C3

I -> S

I -> S

Pending-inv
C1

Lazy linearizability (Lazy invalidation policy + Coherence-aware scheduling)

Ensures compute server fault-tolerant operation

Provides line-rate coherence

Āpta: Fault-tolerant Coherence Protocol

parsed_reviews sentiment_analysis

read_csv

write_to_dbpublish_to_sns

C1

C2

C3 C1

parsed_reviews

Mem C1 C2 C3

I -> S

I -> S

Pending-inv
C1

Āpta Summary

Accelerating
function-as-a-service

Fault-tolerant
coherence protocol

Improves performance by
40% - 142% over RDMA

21% – 90% over RDMA + caching
15% - 42% over un-cached CXL

Protocol verified in Murφ model checker
 32% lower standard deviation of exec time

Object-granular
Disaggregated Memory

Artifacts available

CXL-based shared memory IPC
Bulk cache-line loads

Transaction atomic durability

https://github.com/adarshpatil/apta
https://adar.sh/apta

https://github.com/adarshpatil/apta
https://adar.sh/apta

Summary: Thesis contributions

• Unique design point in the reliability design space
• Explored a novel extrapolation of two-tier approach
• Introduced flexible / on-demand reliability

• Showcases a use case for shared disaggregated memory
• Proposes a lightweight fault tolerance solution
• Consistency & availability via fault-tolerant coherence

Summary: Retrospective contemplation

Critical analysis

Software complexity: OS, scheduler

Problems of scale: throughput, co-location

Performance corner cases: worst-case scenarios

Takeaways

Robust reliability is key for next gen memory
• technology agnostic, demand reliability (DDR, LPDDR, GDDR)
• hardware disaggregated memory (new fault models)

Application driven architecture
• Hardware fault-tolerance must match application evolution
• Good understanding of application characteristics

Revisit design decisions in-step with advances in technology
• shared memory systems today are more closely resembling

traditional distributed systems

End-to-end argument to system design [Saltzer, 1984]

Tame complexity through modularization

Lessons learnt

Mental model of correctness during development

Think and reason from first principles

Future Research Directions

• Value-added disaggregated memory
Reliability, Availability, Security, Compression….

• Redesigning distributed datacenter co-ordination services for modern
hardware

Kubernetes (scheduler), Chubby (locks), Kafka (configuration)….

• Efficient shared disaggregated memory
Heterogenous compute, consistency-directed coherence mechanisms

Future Research Directions

• Value-added disaggregated memory
Reliability, Availability, Security, Compression….

• Redesigning distributed datacenter co-ordination services for modern
hardware

Kubernetes (scheduler), Chubby (locks), Kafka (configuration)….

• Efficient shared disaggregated memory
Heterogenous compute, consistency-directed coherence mechanisms

#OpenToWork – Industry Research positions
Current: Post-doc at University of Edinburgh

What’s next?

What I...

Enjoyed... the journey
• Going with a hunch, high-level problem– usually after discussions with Vijay
• Reading related work critically
• Designing experiments to demonstrate the problem (motivation)
• Inception of a workable solution
• Proof of viability – pen/paper, creative descriptions
• Designing experiments to demonstrate the solution
• Refining the idea & solution
• Putting it all together: Presenting, writing the problem, solution, pros/cons

Disliked...
• Convincing reviewers
• The journey of solitude – the imposter syndrome, the large gaps

beneath the iceberg

What I...

Would do differently (with benefit of hindsight)....
• Better evaluation techniques

e.g., Learn HDL, try FPGA-based prototype

• Better paper positioning for maximum impact
e.g., Apta is an intersection of KV store + FaaS performance + CXL protocol

• Time-management: better context switching between projects

• Dealing with rejection (still not mastered this)

• Prioritize mental wellbeing: self-reassurance, self-belief, avoid comparing

beneath the iceberg

	Slide 1: Co-designing reliability and performance for datacenter memory
	Slide 2: About me: My journey so far…
	Slide 3: Memory – a perpetual conundrum!
	Slide 4: Memory – a perpetual conundrum!
	Slide 5: Thesis objective
	Slide 6: Datacenter memory
	Slide 7: Datacenter memory
	Slide 8: Datacenter memory
	Slide 9: Main memory is comprised of DRAMs
	Slide 10: Pervasive coherence protocols
	Slide 11: Pervasive coherence protocols
	Slide 12: Pervasive coherence protocols
	Slide 13: Pervasive coherence protocols
	Slide 14: Thesis insights and contributions
	Slide 15: Thesis insights and contributions
	Slide 16: Thesis insights and contributions
	Slide 17: The problem: Increasing DRAM Faults
	Slide 18: Progression of Reliability Mechanisms
	Slide 19: Progression of Reliability Mechanisms
	Slide 20: Progression of Reliability Mechanisms
	Slide 21: Progression of Reliability Mechanisms
	Slide 22: Progression of Reliability Mechanisms
	Slide 23: Replication for Reliability
	Slide 24: Replication for Reliability
	Slide 25: Replication for Reliability
	Slide 26: Replication for Reliability
	Slide 27: Replication for Reliability
	Slide 28: Coherent Replication for Performance
	Slide 29: Coherent Replication
	Slide 30: Coherent Replication
	Slide 31: Coherent Replication
	Slide 32: Coherent Replication
	Slide 33: Coherent Replication
	Slide 34: Coherent Replication
	Slide 35: Coherent Replication
	Slide 36: Capacity overheads?
	Slide 37: Capacity overheads?
	Slide 38: Capacity overheads?
	Slide 39: Capacity overheads?
	Slide 40: Summary
	Slide 41: Thesis insights and contributions
	Slide 42: “Serverless” Function-as-a-Service
	Slide 43: “Serverless” Function-as-a-Service
	Slide 44: FaaS applications
	Slide 45: FaaS applications
	Slide 46: Inefficiency of FaaS applications
	Slide 47: Inefficiency of FaaS applications
	Slide 48: Quantifying communication overheads
	Slide 49: Inefficiency of FaaS applications
	Slide 50: Can we do better?
	Slide 51: The problem: Data communication
	Slide 52: Performance potential for Āpta
	Slide 53: Performance potential for Āpta
	Slide 54: Performance potential for Āpta
	Slide 55: Performance potential for Āpta
	Slide 56: Performance potential for Āpta
	Slide 57: The CXL.mem coherence
	Slide 58: The CXL.mem coherence
	Slide 59: The CXL.mem coherence
	Slide 60: The CXL.mem coherence
	Slide 61: The CXL.mem coherence
	Slide 62: The CXL.mem coherence
	Slide 63: The CXL.mem coherence
	Slide 64: The need for fault-tolerant coherence
	Slide 65: The need for fault-tolerant coherence
	Slide 66: The need for fault-tolerant coherence
	Slide 67: The need for fault-tolerant coherence
	Slide 68: Key Problem
	Slide 69: Āpta: Fault-tolerant Coherence Protocol
	Slide 70: Āpta: Fault-tolerant Coherence Protocol
	Slide 71: Āpta: Fault-tolerant Coherence Protocol
	Slide 72: Āpta: Fault-tolerant Coherence Protocol
	Slide 73: Āpta: Fault-tolerant Coherence Protocol
	Slide 74: Āpta Summary
	Slide 75: Summary: Thesis contributions
	Slide 76: Summary: Retrospective contemplation
	Slide 77: Future Research Directions
	Slide 78: Future Research Directions
	Slide 79: What I...
	Slide 80: What I...

