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About me: My journey so far…
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Main memory is comprised of DRAMs

Shared main memory 

NUMA

Disaggregated memory
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Thesis insights and contributions

Employ coherence protocols to improve reliability 
and performance of DRAM memory [ISCA ‘21]

Harden the coherence protocols against common 
modes of failures [DSN ‘23]



Thesis insights and contributions

Improving DRAM Reliability and Performance



The problem: Increasing DRAM Faults
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Coherent Replication

Dvé insights
❑ Use replica to improve performance
❑ Route memory requests to nearest replica
❑ Ensure safe access to replica

Coherent Replication
❑ Builds on existing cache coherence protocols
❑ maintain the replicas in sync (for reliability)
❑ provide coherent access to both replicas during 

fault-free operation (for performance)

Mechanisms
❑ Allow-based
❑ Deny-based
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Capacity overheads?

Dvé insights
❑ Utilize idle memory
❑ Overheads applicable only as and when 

demanded by the application

Skewed memory utilization
❑ 50% of the memory is idle 90% of the time
❑ Provisioning for peak

Interface to allocate high-reliability memory
❑ Hardware-software co-design
❑ OS support

Flexible trade-off between capacity and reliability

Capacity
Reliability

Performance



Summary

Replication for
Reliability

Coherent Replication 
for Performance

Lowers DUE by 

4x over Chipkill
172x over IBM RAIM

11% over Intel Memory Mirroring

Improves performance by

5% - 117% over baseline NUMA
3% - 107% over an improved

Intel mirroring scheme

On-demand Replication Artifacts available

hardware-software co-design 
using OS/compiler support

https://github.com/adarshpatil/dve
https://adar.sh/dve

https://github.com/adarshpatil/dve
https://adar.sh/dve


Thesis insights and contributions

Fault-tolerant disaggregated memory for accelerating FaaS



“Serverless” Function-as-a-Service

FaaS



“Serverless” Function-as-a-Service

FaaS

Scalability

Elasticity

Productivity

Efficiency Lower TCO

Faster time 
to market

Simplicity

Modularity
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• State machine workflow of stateless functions

• Cloud provider dynamically orchestrates and 
schedules functions on a fleet of compute servers

• State maintained externally as objects in a
remote data store

× Splitting state-compute adds communication overheads

How much?
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Quantifying communication overheads

• Functions from FunctionBench and SeBS benchmark suites

• Compute - Optimized with Intel OneAPI, run on 16-core Skylake CPUs

• Communication - Amazon S3 object store (median of 100 executions)

96% of execution time is spent 
in retrieving data from S3
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• State machine workflow of stateless functions

• Cloud provider dynamically orchestrates and 
schedules functions on a fleet of compute servers

• State maintained externally as objects in a
remote data store

× Splitting state-compute adds communication overheads

× Communication overheads severely limit performance

Can we do better?



• High-performance in-memory object store

• One-sided RDMA verbs to read/write objects

• Infiniband network (Mellanox ConnectX-3 NIC on PCIe-gen3 x16)

•  

Can we do better?

51% of execution time is spent in 
retrieving data from object store



The problem: Data communication

“The two most expensive operations in terms of 
cost were the orchestration workflow and when 
data passed between distributed components. ” 
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Object-granular CXL disaggregated memory 

Performance potential for Āpta 

Pooled + shared memory on 
centralized memory server

Hardware load/store interface 
Cache-able memory

Specialized controllers for 
data plane operations

Low-power SoC for 
control plane operations

Fig: Āpta system schematic



With OpenCAPI-like access latency / bandwidth for DM†

13% communication overheads (Recall 51% for RDMA-based object store)

Performance potential for Āpta 

2x over 
RDMA object store

59x over S3

† ThymesisFlow [MICRO 20]
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Object caching at compute server

Performance potential for Āpta 

2.3x over 
RDMA object store

Our target!
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• The fault tolerance problem

Compute server failures – blocking
Network congestions – high tail latency

The need for fault-tolerant coherence
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• Invalidations are in the critical path of a write

Key Problem
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i. Lazy invalidation policy 
Write is acknowledged immediately

Invalidation messages are sent asynchronously and tracked

Āpta: Fault-tolerant Coherence Protocol
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ii. Coherence-aware function scheduling 
Never schedules function invocations on servers with pending 
invalidation-acknowlegements

Āpta: Fault-tolerant Coherence Protocol
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Lazy linearizability (Lazy invalidation policy + Coherence-aware scheduling)

Āpta: Fault-tolerant Coherence Protocol
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Lazy linearizability (Lazy invalidation policy + Coherence-aware scheduling) 

Ensures compute server fault-tolerant operation

Provides line-rate coherence

Āpta: Fault-tolerant Coherence Protocol
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Āpta Summary

Accelerating 
function-as-a-service

Fault-tolerant 
coherence protocol

Improves performance by
40% - 142% over RDMA

21% – 90% over RDMA + caching
15% - 42% over un-cached CXL

Protocol verified in Murφ model checker
 32% lower standard deviation of exec time

Object-granular
Disaggregated Memory

Artifacts available

CXL-based shared memory IPC
Bulk cache-line loads

Transaction atomic durability

https://github.com/adarshpatil/apta
https://adar.sh/apta

https://github.com/adarshpatil/apta
https://adar.sh/apta


Summary: Thesis contributions

• Unique design point in the reliability design space
• Explored a novel extrapolation of two-tier approach
• Introduced flexible / on-demand reliability 

• Showcases a use case for shared disaggregated memory
• Proposes a lightweight fault tolerance solution
• Consistency & availability via fault-tolerant coherence



Summary: Retrospective contemplation

Critical analysis

Software complexity: OS, scheduler

Problems of scale: throughput, co-location

Performance corner cases: worst-case scenarios

Takeaways

Robust reliability is key for next gen memory
• technology agnostic, demand reliability (DDR, LPDDR, GDDR)
• hardware disaggregated memory (new fault models)

Application driven architecture
• Hardware fault-tolerance must match application evolution
• Good understanding of application characteristics

Revisit design decisions in-step with advances in technology
• shared memory systems today are more closely resembling 

traditional distributed systems

End-to-end argument to system design [Saltzer, 1984]

Tame complexity through modularization

Lessons learnt

Mental model of correctness during development

Think and reason from first principles



Future Research Directions

• Value-added disaggregated memory 
Reliability, Availability, Security, Compression….

• Redesigning distributed datacenter co-ordination services for modern 
hardware

Kubernetes (scheduler), Chubby (locks), Kafka (configuration)…. 

• Efficient shared disaggregated memory
Heterogenous compute, consistency-directed coherence mechanisms



Future Research Directions

• Value-added disaggregated memory 
Reliability, Availability, Security, Compression….

• Redesigning distributed datacenter co-ordination services for modern 
hardware

Kubernetes (scheduler), Chubby (locks), Kafka (configuration)…. 

• Efficient shared disaggregated memory
Heterogenous compute, consistency-directed coherence mechanisms

#OpenToWork – Industry Research positions
Current: Post-doc at University of Edinburgh

What’s next?



What I...

Enjoyed... the journey
• Going with a hunch, high-level problem– usually after discussions with Vijay
• Reading related work critically
• Designing experiments to demonstrate the problem (motivation)
• Inception of a workable solution
• Proof of viability – pen/paper, creative descriptions
• Designing experiments to demonstrate the solution
• Refining the idea & solution
• Putting it all together: Presenting, writing the problem, solution, pros/cons

Disliked...
• Convincing reviewers 
• The journey of solitude – the imposter syndrome, the large gaps

beneath the iceberg



What I...

Would do differently (with benefit of hindsight)....
• Better evaluation techniques

e.g., Learn HDL, try FPGA-based prototype

• Better paper positioning for maximum impact
e.g., Apta is an intersection of KV store + FaaS performance + CXL protocol 

• Time-management: better context switching between projects

• Dealing with rejection (still not mastered this)

• Prioritize mental wellbeing: self-reassurance, self-belief, avoid comparing

beneath the iceberg
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