
Co-designing Reliability and Performance

for Datacenter Memory

Adarsh Patil

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

The University of Edinburgh

2023

To my beloved Kumudha

iii

Acknowledgments

Undertaking a PhD has been a truly humbling experience and this thesis is the

epitome of human emotion and bonding. I have many to thank in this journey.

Think carefully

My advisor Vijay Nagarajan has been a great mentor. He has steered me

towards interesting problems while also providing me the necessary freedom

to explore and pursue ideas of my own. I am inspired by Vijay’s approach

to research - the wholistic understanding of a topic from first principles. Our

brainstorming discussions were always insightful and thought provoking. His

patience and encouragement during the difficult phase of my thesis was truly

admirable. He was instrumental in setting up my collaborations with Rajeev Bal-

asubramonian (University of Utah) and Nikos Nikoleris (ARM). I have enjoyed

working with them and learnt a great deal over the course of the projects.

Being a better person

I wouldn’t be where I am today without my wife, Kumudha. You have played an

extraordinarily important role in the making of this thesis and I can only say that

this is your dissertation, as much as it is mine. You have always lent me a patient

ear and provided the best advice possible, at any and all times regardless of

your work commitments. There are no words that can satisfactorily express my

gratitude for the several sacrifices you’ve made to enable me to pursue this PhD.

Your unyielding love and unwavering support has been my source of strength.

You have stood by me through the highs and lows and always been there for

me as my best friend, my confidant, my sounding board, my moral compass,

my north star and to you, I dedicate this thesis.

If you want to go far, go together

I am grateful to have interacted with and received feedback from Prof. Murray

Cole, Dr. Sam Ainsworth, Prof. Boris Grot, Prof. Michio Honda, Prof. Antonio

Barbalace. Learning from the very best in the field has been a privilege, and

has made a far reaching impact on my thought process. I thank the many

anonymous reviewers from the Computer Architecture community who have

vetted my work and helped improve their scientific value and resulting impact.

In the development of this thesis I have used a number of open source projects.

iv

I thank the developers and contributors of gem5, SynchroTrace, Valgrind, Func-

tionBench, SeBS, numpywren, Kubernetes and so many more.

Rousseau’s amour de soi (love thyself)

The highest improvements always lie at the edge of one’s ability and the PhD

process has rightly pushed me above and beyond mine. My sincere thanks to

the following people for teaching me self-belief and showing me that my limits

are only in my mind. My theraphist Artis Orbis, for guiding me to manage my

debilitating panic attacks and to reconcile with my overly self-critical inner self.

All the Pleasance gym instructors - Julie Paton-Monk, Fabrizio Di Battista, Linzi

Drew, Max Freyne to name a few, who provided me the physical strength to

endure and encouraged me to push harder. Their constant positivity and energy

helped me cope with stress and never cave to pressure. The beautiful outdoors

in the country of Scotland - Fife, Loch Lomond, Isle of Arran, amongst several

others that helped me to recoup and rediscover myself and humbly embrace

my limits, fully and without fear.

the community and a sense of belonging

I am grateful for all my friends Nicolai, Vasilis, Antonis, Andres, Sukarn, Karim,

Dmitrii, Artemiy, Shyam for their valuable company, both technically and so-

cially. I thank the faculty members and staff of the School of Informatics for

all their support. Thanks are also due for the funding sources ARM Center of

Excellence, ACM travel grant for supporting me financially and providing for my

sustenance and living expenses.

my circle of strength

I express my profound gratitude to my parents for their endless love and belief

in me. Everything good in me stems from them. Thank you both for providing

me every opportunity to reach for the stars and chase my dreams.

Thanks are also due to my extended family for all their support. My grandfather

Dr. M R Gorbal for his constant encouragement. My cousins Harsha Imrapur

and Kanchana Imrapur and their family who provided me with a homely envi-

ronment to celebrate festivals every year, away from home. My parents-in-law

for their constant prayers and well wishes.

I sincerely thank you all and the many I have missed, who have contributed in

one way or another over the 4 years it has taken to write this thesis.

v

Lay Summary

Today’s world is increasingly reliant by cloud-based always-online applications

for everything from banking, social media to online shopping and food deliv-

ery. These applications run on computers within large warehouses, colloqui-

ally known as datacenters. The datacenter computers are high-end systems

called servers which are required to be highly-reliable and also provide high-

performance. For instance, a banking application must be available to cus-

tomers at any time and provide fast access to accounts, cards, etc.

One key component of the server that affects both reliability and performance

is memory, which holds data. Similar to memory in humans, memory in servers

is volatile and can sometimes be lost. The memory loss can occur due to

failures in several sources like worn out or faulty memory cells, damaged wires

that carry data, external factors like temperature or electrical disturbances.

Such memory failures can cause applications to crash. This thesis explores

techniques to strengthen memory reliability while simultaneously ensuring the

improved performance of memory for applications.

To keep memory reliable, whenever data is written to memory, a full data replica

is kept as far apart and disjoint in another memory system within the server.

This comprehensively allows tolerating memory loss arising from failures in any

source. Beneficially for performance, the full data replica can also be read by

routing memory requests to the replica that is nearest to the requestor. All this

behavior is made possible by specifying a protocol to perform precise actions

for each read and write.

Servers in the datacenter are also connected to a common shared memory.

This allows applications running on the servers to share data efficiently. For

example, the bank application running on server A can send money to the food

delivery application running on server B through the shared memory. However,

just like memory, the independent servers in the datacenter can fail unexpect-

edly. Therefore, actions in the protocol for memory reads and writes must not

be reliant on other servers being alive. In our example, if the food delivery order

on server B fails, the money must not be lost. This thesis proposes to harden

the protocol, transforming an unreliable protocol into a fault-tolerant one.

vi

Abstract

Memory is one of the key components that affects reliability and performance

of datacenter servers. Memory in today’s servers is organized and shared in

several ways to provide the most performant and efficient access to data. For

example, cache hierarchy in multi-core chips to reduce access latency, non-

uniform memory access (NUMA) in multi-socket servers to improve scalability,

disaggregation to increase memory capacity. In all these organizations, hard-

ware coherence protocols are used to maintain memory consistency of this

shared memory and implicitly move data to the requesting cores.

This thesis aims to provide fault-tolerance against newer models of failure in the

organization of memory in datacenter servers. While designing for improved

reliability, this thesis explores solutions that can also enhance performance of

applications. The solutions build over modern coherence protocols to achieve

these properties.

First, we observe that DRAM memory system failure rates have increased,

demanding stronger forms of memory reliability. To combat this, the thesis

proposes Dvé, a hardware driven replication mechanism where data blocks are

replicated across two different memory controllers in a cache-coherent NUMA

system. Data blocks are accompanied by a code with strong error detection

capabilities so that when an error is detected, correction is performed using

the replica. Dvé’s organization offers two independent points of access to data

which enables: (a) strong error correction that can recover from a range of faults

affecting any of the components in the memory and (b) higher performance by

providing another nearer point of memory access. Dvé’s coherent replication

keeps the replicas in sync for reliability and also provides coherent access to

read replicas during fault-free operation for improved performance. Dvé can

flexibly provide these benefits on-demand at runtime.

Next, we observe that the coherence protocol itself requires to be hardened

against failures. Memory in datacenter servers is being disaggregated from the

compute servers into dedicated memory servers, driven by standards like CXL.

CXL specifies the coherence protocol semantics for compute servers to access

and cache data from a shared region in the disaggregated memory. However,

vii

the CXL specification lacks the requisite level of fault-tolerance necessary to

operate at an inter-server scale within the datacenter. Compute servers can

fail or be unresponsive in the datacenter and therefore, it is important that the

coherence protocol remain available in the presence of such failures.

The thesis proposes Āpta, a CXL-based, shared disaggregated memory system

for keeping the cached data consistent without compromising availability in

the face of compute server failures. Āpta architects a high-performance fault-

tolerant object-granular memory server that significantly improves performance

for stateless function-as-a-service (FaaS) datacenter applications.

Keywords: memory, DRAM, reliability, performance, coherence protocols,

memory disaggregation, fault-tolerance, function-as-a-service

viii

Declaration
I declare that this thesis was composed by myself, that the work contained

herein is my own except where explicitly stated otherwise in the text, and

that this work has not been submitted for any other degree or professional

qualification except as specified. This thesis incorporates and extends work

that first appeared in the following papers:

[146] Adarsh Patil, Vijay Nagarajan, Rajeev Balasubramonian, Nicolai Oswald

Dvé: Improving DRAM Reliability and Performance On-Demand via Co-

herent Replication

Appears in proceedings of the 48th Annual International Symposium on

Computer Architecture (ISCA), 2021

[147] Adarsh Patil, Vijay Nagarajan, Nikos Nikoleris, Nicolai Oswald

Āpta: Fault-tolerant object-granular CXL disaggregated memory for accel-

erating FaaS

Appears in proceedings of 53nd Annual IEEE/IFIP International Confer-

ence on Dependable Systems and Networks (DSN), 2023

(Adarsh Patil)

ix

Contents

1 Introduction 1
1.1 Problem discussion . 3
1.2 Solution direction . 5
1.3 Our Approach . 7

1.3.1 Coherent memory replication . 7
1.3.2 Lazy invalidation with coherence-aware scheduling 8

1.4 Summary . 8

2 Background 11
2.1 Memory organization . 11

2.1.1 Non-uniform memory access (NUMA) 13
2.1.2 Hardware disaggregated memory (DM) 15

2.2 Coherence protocols . 17
2.2.1 NUMA coherence . 18
2.2.2 DM coherence - CXL.mem . 18

2.3 DRAM overview . 19
2.3.1 DRAM fundamentals . 19
2.3.2 DRAM errors and mitigation mechanisms 21

2.4 FaaS overview . 25
2.4.1 FaaS fundamentals . 25
2.4.2 Fault tolerance in FaaS . 28

2.5 Summary . 29

3 Dvé: Coherent replication to improve DRAM reliability and performance 31
3.1 Overview . 31
3.2 Motivation . 34

3.2.1 Growing DRAM error rates . 35
3.2.2 Need for on-demand memory reliability 37

3.3 Dvé . 39
3.3.1 Design . 39
3.3.2 Quantifying the reliability of Dvé 41
3.3.3 System model . 47
3.3.4 Consistency and recovery semantics 49
3.3.5 Coherent replication . 50

xi

3.4 Discussion . 55

3.4.1 OS support for memory replication 55

3.4.2 Performance caveats of Dvé . 58

3.5 Evaluating Dvé . 58

3.5.1 Evaluation goals . 58

3.5.2 Evaluation methodology . 59

3.5.3 Evaluation results . 62

3.5.4 Evaluation summary . 67

3.6 Related work . 67

3.7 Summary . 70

4 Āpta: Fault-tolerant CXL disaggregated memory for accelerating FaaS 71
4.1 Overview . 71

4.2 Motivation . 76

4.2.1 The performance potential of a DM-based object store 76

4.2.2 The lack of fault-tolerance in current DM systems 80

4.2.3 Inefficiencies of DM for object stores 81

4.3 Āpta . 81

4.3.1 Setting the stage: Designing a DM-based object store 82

4.3.2 Fault-tolerant Coherence Protocol 84

4.3.3 Addressing the inefficiencies of DM 86

4.3.4 Realizing Āpta’s architecture . 88

4.3.5 Putting it all together . 93

4.4 Evaluating Āpta . 95

4.4.1 Evaluation goals . 95

4.4.2 Evaluation methodology . 96

4.4.3 Evaluation results . 99

4.4.4 Evaluation summary . 102

4.5 Discussion . 103

4.5.1 Specifics of CXL support for Āpta 103

4.5.2 Generality of proposed hardware 104

4.5.3 FaaS scheduler deep-dive: Case study Kubernetes 105

4.6 Related work . 106

4.7 Summary . 108

5 Conclusion and future work 109
5.1 Summary of contributions . 109

5.2 Critical analysis and takeaways . 110

5.3 Future work . 113

5.4 Concluding Remarks . 115

xii

Bibliography 117

xiii

List of Figures

1.1 Reviewing the classic pyramid diagram of memory hierarchy 2
1.2 Physical organization of memory in datacenters 3
1.3 Risk of errors in various DRAM components 4
1.4 Risk of errors in the disaggregated memory 6

2.1 Baseline processor and memory model used throughout this thesis . . 12
2.2 Scale-up system: Two processor system in a NUMA organization 14
2.3 Hardware disaggregated memory system 15
2.4 Components and organization of DRAM memory 20
2.5 Error mitigation mechanisms in the DRAM hierarchy 22
2.6 Working of specimen FaaS application 26

3.1 Comparison of various DRAM reliability designs 33
3.2 Anatomy of RAS features in memory . 35
3.3 Dvé replication schematic . 39
3.4 Coherence view in NUMA and Dvé . 48
3.5 Logical view of coherence in Dvé . 49
3.6 Allow-based coherence protocol state machine diagram 51
3.7 Deny-based coherence protocol state-machine diagram 53
3.8 Performance comparison of Dvé . 62
3.9 Sharing pattern in benchmarks . 63
3.10 Inter-socket traffic (normalized to NUMA) 64
3.11 Performance of allow-based protocol optimizations 65
3.12 Sensitivity to interconnect latency . 66
3.13 Energy-Delay Product of DRAM subsystem 66

4.1 Āpta system schematic . 72
4.2 Compute-to-communication ratio in function execution using (a) Amazon

S3 (b) in-memory RDMA store . 77
4.3 Comparison of FaaS functions performance with various object stores . 78
4.4 FaaS object sharing through DM: organization and addressing 82
4.5 Operation of get and put using specialized controllers 87
4.6 OTC (Directory): Complete coherence protocol 90
4.7 FaaS applications annotated with object store interactions and schedul-

ing decisions . 94

xv

4.8 Performance comparison of Āpta . 99
4.9 Comparing object get and put latencies 101
4.10 Speedups of Āpta for varied interconnect characteristics 102
4.11 Speedups of Āpta for varied computation capability 103

xvi

List of Tables

3.1 DRAM DUE and SDC rates and improvement 42
3.2 Configuration of the Dvé simulated system 59
3.3 Multi-threaded workloads evaluated . 61

4.1 Taxonomy of state-of-the-art proposals 75
4.2 Object size analysis of Azure trace data 79
4.3 FaaS applications evaluated . 96
4.4 Configuration of the Āpta simulated system 97
4.5 Analysis of get and put characteristics for FaaS application execution . 101

xvii

1
Introduction

Memory is a vital component of today’s datacenter computing systems and

has evolved along with the rest of the system. Memory is actually a complex

subsystem which is a combination of various technologies, each with their own

unique trade-offs (latency, bandwidth, capacity, cost) as shown in Fig. 1.1. For

datacenter servers, the objective is to architect an intelligent combination of

these to achieve high performance, efficiently.

To satisfy this goal, system designers have relentlessly pursued innovations in

the memory subsystem. These innovations are enabled by continual advance-

ments in manufacturing processes and tighter circuit designs. For instance,

increase in memory density is achieved through shrinking DRAM process tech-

nology [13], increase in memory bandwidth by way of physically distributing

memory across sockets and/or chiplets within a server [187], higher memory

capacity by means of attaching memory over newer generations of PCIe with

an alternate protocol like CXL [33, 55, 143].

However, memory designs are faced with increased failure rates and newer

models of failure [17, 122, 170, 171]. The higher density DRAM has exacer-

bated various unwanted circuit-level phenomena leading to increased memory

errors. Despite several redundancies incorporated to mitigate these errors, at

the detriment of performance, memory errors still remain a serious cause of

concern [16, 71, 122, 162, 166, 170, 171]. Similarly, using a loosely coupled

memory over a high-speed PCIe interconnects introduces partial system failure

model [14, 39, 85]. The lack of fault-tolerance to such failures limits the use of

this high-performance memory system for modern datacenter applications.

1

2 Chapter 1. Introduction

Figure 1.1 The memory pyramid showing the plethora of options available

today to design the memory hierarchy for datacenter systems. Each level is a

type/class of memory and in brackets, the corresponding technologies used to

implement it. The challenge today is in selecting the right mix of technologies

to architect a well-balanced memory (capacity/cost/performance/reliability) for

datacenter servers.

Therefore it is vital that in modern memory systems, system designers must in-

corporate further error mitigation mechanisms to prevent such hardware errors

from causing software-visible failures. Care must be taken to ensure that these

reliability mechanisms must not stymie performance for applications.

The pervasiveness of coherence protocols: Modern servers combine all

these memory technologies and present an abstraction of a single atomic mem-

ory. To achieve this illusion of a singular memory that is shared between all

the cores, hardware coherence protocols are employed at various levels. As

seen in Fig. 1.2, atleast 3 levels of protocols exist in a next generation datacen-

ter rack, namely intra-processor, inter-processor and inter-server coherence.

These coherence protocols are designed to enforce memory consistency and

provide better cache performance. Fault tolerance is generally not a considera-

tion. However, as memory designs evolve and more closely resemble traditional

distributed systems, building reliability into these protocols must be a first order

design concern.

1.1. Problem discussion 3

Figure 1.2 Physical organization of memory in datacenters. The figure shows a

datacenter rack/cabinet with 2-socket NUMA-based compute servers, sharing

memory from a pooled disaggregated memory server over CXL. A top-of-rack

CXL switch connects the compute servers and memory servers within a rack.

Thesis insight: These ubiquitous coherence protocols can be employed to

jointly improve the reliability and performance of the datacenter memory system.

We are also cognizant that coherence protocols themselves can be a problem

for improved reliability and performance. Therefore, in this thesis, we aim to

both reinforce the system and harden the coherence protocols against common

modes of failures. Further, to design sound and efficient system solutions, we

aim use a holistic approach to system design with an end-to-end understanding

of all the components of the system - from the application software to the

hardware architecture.

1.1 Problem discussion

We now identify and describe two key reliability problems in modern datacenter

memory system.

Insufficient DRAM memory reliability: As technologies continue to shrink,

DRAM memory system failure rates have increased, demanding support for

stronger forms of reliability [16, 71, 122, 162, 166, 170, 171]. Errors have been

4 Chapter 1. Introduction

Figure 1.3 Risk of errors in various DRAM components, denoted by ×. Several

field studies have characterized these errors and observed the increasing vari-

ety and granularity of DRAM errors. Growing DRAM error rates are a constant

cause of concern.

observed in almost every component of DRAM memory as illustrated in Fig. 1.3.

DRAM architects have reacted by incrementally applying an evolution of the

same technique used to mitigate DRAM cell failures – forward error correction.

Forward error correction scheme pads data with error correcting code (ECC)

and distributes the resulting code word on a set of components such that, on a

partial failure, data can be recovered from the remaining fault-free data and the

padded error correction code. DRAM memory now has this technique built-in

at various points in the hierarchy (e.g., cell, rank, chip, channel) to detect and

correct errors.

We observe that in the face of increasing errors, to maintain memory reliability,

the capacity overhead incurred using the current techniques is rapidly growing

(e.g., additional on-die ECC, doubling of ECC bits, row/column sparing). Further,

these mitigation techniques are inadequate for the nature of errors seen in field

studies (e.g., non-cell chip-internal circuitry errors) and for handling newer

failure models (e.g., temperature induced, row-hammer, disturbance faults).

Additionally, there are more problems with such designs (a) typically, error

detection/correction imposes a performance overhead, (b) the reliability achie-

veable is strictly fixed at design time and cannot be increased on-demand for

say, critical applications or aged DRAMs. Therefore, there is a need for a new

holistic approach to error correction that can correct errors of any granularity.

Non fault-tolerant disaggregated memory: Hardware disaggregated memory

is the capability for compute servers to access a physically distributed remote

memory with the traditional load/store semantics. The CXL specification [33],

1.2. Solution direction 5

proposed by a consortium of hardware vendors, defines a standardized inter-

face to create such an architecture over the PCIe physical interconnect. As

illustrated in Fig. 1.4, CXL provides low-latency, high-bandwidth access to re-

mote memory from compute servers, just like in traditional NUMA architectures.

The recent CXL 3.0 specification allows memory regions in the disaggregated

memory to be shared between multiple compute servers. The compute server

can transparently cache data from the shared disaggregated memory. CXL

defines a coherence protocol to keep these caches coherent.

However, because individual compute servers can fail or become unresponsive

in the datacenter [14, 39], it is important that the coherence protocol remains

available in the presence of such failures: i.e., the protocol should not block

indefinitely if any of the servers fail. Alas, while the CXL protocol enforces

strong consistency of the data in the caches, it fundamentally blocks in the

presence of server failures: if a server caching a shared cache line fails, a write

to that shared cache line from any other server could indefinitely block waiting

for an acknowledgment from the failed sharer.

This naive application of a traditional multi-processor non fault-tolerant coher-

ence protocol for distributed disaggregated memory leaves CXL systems vul-

nerable to system crashes. Such availability guarantee is of paramount impor-

tance for modern cloud computing applications that have already embraced

compute servers failures via a new programming paradigm - Function-as-a-

service (FaaS) [4, 60, 126]. Today, all major cloud providers support FaaS

deployment, also called serverless computing (Fig. 1.4).

1.2 Solution direction

To reiterate, in this thesis, we seek to develop solutions that enhance memory

system reliability while also aiming to improve performance for datacenter ap-

plications. We achieve this design with broad and holistic understanding of the

multiple components of production cloud datacenters viz.,

≻the memory subsystem: from current caches, coherence, DRAM architec-

tures to upcoming technologies like CXL disaggregated memory,

6 Chapter 1. Introduction

≻the compute workloads: from classical shared memory programs to prospec-

tive function-as-a-service applications.

More specifically,

(i) to improve DRAM reliability, we explore a new design which replicates

data and flexibly trades-off reduced capacity for improved reliability and

performance.

(ii) to provide fault-tolerant disaggregated memory, we harden the CXL coher-

ence protocol and specialize the memory to accelerate modern function-

as-a-service datacenter applications.

Figure 1.4 Risk of errors in the disaggregated memory configuration in the

datacenter, denoted by ×. Because of this risk, function-as-a-service (FaaS)

cloud computing paradigm uses applications programmed to be fault-tolerant

to such errors. Below: popular cloud providers’ FaaS offerings.

1.3. Our Approach 7

1.3 Our Approach

We have thus far described the problem space and the direction we seek to

address the challenge of providing higher reliability memory. We now briefly pre-

view our approach and the mechanisms we employ, for building fault-tolerance

in the remainder of this section.

1.3.1 Coherent memory replication

To address the need for improved DRAM reliability, we take inspiration from the

two-tier approach that decouples DRAM error correction from detection and

explore a novel extrapolation. We propose Dvé, a hardware-driven replication

mechanism where data blocks are replicated in 2 different sockets across a

cache-coherent NUMA system. Each data block is also accompanied by a code

with strong error detection capabilities so that when an error is detected, cor-

rection is performed using the replica. Such an organization has the advantage

of offering two independent points of access to data which enables:

1. strong error correction that can recover from a range of faults affecting

any component in the memory, upto and including the memory controller.

2. higher performance by providing another nearer point of memory access.

Dvé realizes both of these benefits via Coherent Replication, a technique that

builds on top of existing cache coherence protocols for not only keeping the

replicas in sync for reliability, but also to provide coherent access to the replicas

during fault-free operation for performance. Dvé can flexibly provide these

benefits on-demand by simply using the provisioned memory capacity which, as

reported in recent studies, is often underutilized in today’s systems. Thus, Dvé

introduces a unique design point that offers higher reliability and performance

on-demand for workloads that do not require the entire memory capacity.

8 Chapter 1. Introduction

1.3.2 Lazy invalidation with coherence-aware scheduling

As datacenter applications increasingly adopt the fault-tolerant Function-as-a-

Service (FaaS) model, demand for improved performance has increased. Alas,

the performance of FaaS applications is heavily bottlenecked by the remote ob-

ject store in which FaaS objects are maintained. We identify that the upcoming

CXL-based cache-coherent disaggregated memory is a promising technology

for maintaining FaaS objects. Our analysis indicates that CXL’s low-latency,

high-bandwidth access characteristics coupled with compute-side caching of

objects, provides significant performance potential over an in-memory RDMA-

based object store.

However, CXL lacks the requisite level of fault-tolerance necessary to operate at

an inter-server scale within the datacenter. Furthermore, its cache-line granular

accesses impose inefficiencies for object-granular data store accesses.

We propose Āpta, a CXL-based object-granular memory interface for main-

taining FaaS objects. Āpta’s key innovation is a novel fault-tolerant coherence

protocol for keeping the cached objects consistent without compromising avail-

ability in the face of compute server failures. Our evaluation of Āpta using 6 full

FaaS application workflows (totaling 26 functions) indicates that it outperforms

a state-of-the-art fault-tolerant object caching protocol on an RDMA-based

system by 21–90% and an uncached CXL-based system by 15–42%.

1.4 Summary

To recap, reliability is a key design facet of modern memory systems. Designing

memory with higher reliability must not compromise on performance.

In this thesis, we observe two reliability deficiencies in the next generation of

datacenter memory systems. Firstly, newer generations of DRAM memory are

faced with higher error rates. Existing mitigation techniques are insufficient and

are detrimental to performance. Secondly, emerging hardware disaggregated

memory has the potential to accelerate new paradigms of datacenter applica-

tions. To realize this potential, disaggregated memory systems need to provide

1.4. Summary 9

fault-tolerant operations without performance penalties.

Our aim is to architect techniques to solve the challenge of improving both

reliability and performance of modern datacenter memory. We elaborate on the

issues discussed above in the rest of this thesis.

Chapter 2 covers the necessary background about the various organizations

of memory in datacenter systems and the coherence protocols employed

therein. We also describe the fundamental workings of and examine

the fault-tolerance mechanisms in the DRAM memory system and in the

function-as-service programming model.

Chapter 3 Dvé, delves into how memory replication is employed to guarantee

higher DRAM reliability, provide memory performance gains and the ability

to avail higher on-demand reliability.

Chapter 4 Āpta, describes the design of a fault-tolerant CXL disaggregated

memory with an object-granular interface to accelerate FaaS applications

in the datacenter.

Chapter 5 concludes with a summary of contributions and key results. We

critically review our designs and provide perspectives on future directions.

2
Background

This chapter provides the background necessary to understand the contribu-

tions of this thesis. Sec. 2.1 describes the various hardware organizations of

memory in the datacenter (NUMA, disaggregated memory). Sec. 2.2 discusses

the coherence protocols employed in each of the memory organizations to keep

the memory consistent. Sec. 2.3 explains the DRAM memory structure, its

operation, the failure models observed and the various mitigation techniques.

Finally, Sec. 2.4 details the function-as-a-service cloud computing model, its

execution model and its approach to fault-tolerance.

In the rest of this thesis, we use the terms:

CPU or core to refer to the logic circuitry that processes instructions and in-

cludes components like the ALU, pipelines, registers.

Processor or chip to refer to the full integrated circuit containing multiple cores,

caches, memory controllers and other architectural controllers that are co-

located within a single silicon die. The processor is seated into a socket on the

motherboard within a server chassis.

2.1 Memory organization

This section provides a background of the main memory organization in modern

servers. Fig. 2.1 illustrates the baseline processor and memory model we use

throughout this thesis. It consists of a processor chip with multiple cores which

communicate over an underlying on-chip interconnection network. There is

11

12 Chapter 2. Background

an off-chip main memory connected to the processor by a separate, parallel

memory interconnects also known as a channels. We elaborate on the logical

hierarchy of the various memory components below.

Figure 2.1 Baseline processor and memory model used throughout this thesis

SRAM caches are the highest level of the memory hierarchy, closest to the core

within the processor. To take advantage of the principle of locality at several

stages, multiple levels of caches exist. Some levels of caches are private to

each core (e.g., L1 caches), while some may be shared between cores (e.g.,

last-level cache). Caches closer to the cores have a lower latency than the

ones further away. A cache controller, located beside the cache, defines the

specific action to be performed for each request from the core. A request

may be satisfied at a certain cache level (cache hit), or the request is sent

through to subsequent cache level (cache miss). If the data is not available in

any cache levels, it is retrieved from the main memory. The data retrieved is

stored in the caches for future reuse, thereby exploiting locality. The caches

are accessed with the memory physical address and organized in any of the

several well-known ways.

Main memory is the byte addressable, physical memory exposed to the core.

Main memory is commonly built with Dynamic Random Access Memory (DRAM)

technology and is located off the processor chip (off-chip). The total main mem-

ory capacity in the system can be a combination of directly attached local

2.1. Memory organization 13

DRAM memory (e.g, DDR3/DDR4, HBM) and over the interconnect remote

DRAM memory (NUMA, disaggregated memory) as shown in Fig. 1.2. A DDR4

local memory can provide an access latency between 30-50ns while NUMA-

based and CXL-based remote memories add further 50ns [69] and 100ns [108]

interconnect latencies, respectively, to the access time.

Main memory in modern computer systems is normally shared between multiple

cores and even multiple processors, as seen in Fig. 1.2. Computer systems

provide the ability to share this memory using hardware implementations. This

is referred to as hardware shared memory or simply shared memory. In a

shared memory system, each of the cores may read and write data to the same

region of memory concurrently (also termed shared address space). A memory

consistency model defines the correct and precise shared memory behavior for

the reads and writes. In a shared memory system with caches, the data held

in the caches can potentially become out-of-date (or incoherent) when one of

the other core updates the data. A hardware coherence mechanism seeks

to make the caches of a shared memory system invisible by propagating a

core’s write to other caches. We explain further details of hardware coherence

mechanism in Sec. 2.2.

2.1.1 Non-uniform memory access (NUMA)

To scale-up a shared memory system, multiple processor chips are seated into

sockets within a server. Fig. 2.2 shows an example of a 2-socket compute

servers in the NUMA organization. The multi-core chips are connected by

a high-bandwidth, low-latency, point-to-point, serial interconnect like Intel’s

QPI/UPI, AMD’s Hypertransport/InfinityFabric or similar. The memory in these

multi-socket systems is physically distributed i.e., some memory capacity is

located adjoining each socket. However, the entire memory capacity is exposed

as a single, flat address space to all the cores in the system. Therefore, in this

architecture, some main memory accesses are much faster than others as it

depends on the location of the data. Accessing data locations mapped to a

remote sockets memory experiences a higher latency, as it requires traversing

the socket interconnect links, compared to accessing locations on the same

socket.

14 Chapter 2. Background

Figure 2.2 Scale-up system: Two processor system in a NUMA organization

NUMA-aware software: Modern operating systems (OS) can automatically

employ policies to ensure that data accessed by each core is mapped to the

socket adjacent, local memory. This best effort mapping techniques can help

reduce the NUMA effects for applications running on such architectures. How-

ever, these policies cannot completely eliminate NUMA effects in all scenarios.

For example, when an applications have a memory working set size larger

than the size of local memory, some access requests will inevitably experience

higher access latency. Alternatively, applications can also use system calls to

explicitly specify allocation policy for each request at a fine-grain.

Cache-coherent NUMA: In NUMA architectures, caches within a processor

chip are allowed to cache memory from both local and remote memory regions.

An inter-processor hardware cache-coherence protocol is employed to keep

these caches consistent. This protocol guarantees that when a memory location

is read the most up-to-date value of memory (also known as the most recently

written value) is returned to the cores, irrespective of where the data is located.

Therefore, in NUMA architectures the placement of data in memory can only

influence performance and not the correctness of the code. We discuss more

about the NUMA coherence protocols in Sec. 2.2.1.

2.1. Memory organization 15

Figure 2.3 Hardware disaggregated memory system: A processor connected

to memory over a CXL interconnect

2.1.2 Hardware disaggregated memory (DM)

To expand memory capacity and reduce memory over-provisioning / under-

utilization, it has been proposed to pool and consolidate some of the main

memory into dedicated memory servers. CPUs on compute servers can ac-

cess this physically disaggregated memory via the regular load/store (ld/st)

accesses, similar to remote NUMA memory. The data from memory can also

be cached in CPUs local caches and kept coherent via an inter-server coher-

ence protocol. Several competing standards were initially proposed to build

such a DM architecture - GenZ[55], OpenCAPI[143], CXL[33], CCIX[24]. Over

time, all standards have now coalesced under the CXL umbrella due to their

synergistic goals. Fig. 2.3 illustrates such a DM architecture where a processor

accesses memory over the CXL interconnect.

≻ Key benefit: The DM architecture enables the transition from a fixed memory

system into a flexible one with desired capacity, bandwidth, and cost-per-GB

based on the workloads requirements.

Compute Express Link (CXL) [33] is an industry-consortium driven, intercon-

nect standard for providing high-bandwidth, low-latency connectivity between

processors and memory. CXL runs over next gen PCI-Express (PCIe) 5.0 and

6.0 physical layer (PHY) but with custom link and transaction layers to achieve

16 Chapter 2. Background

lower, nanosecond-order latency. Typically, any memory attached over PCIe

is mapped into the system as a memory-mapped I/O (MMIO) region, which is

uncacheable. CXL aims to provide coherency and memory semantics on top of

non-coherent PCIe interconnect. CXL defines 3 protocols - CXL.io, CXL.cache,

CXL.mem - for various use cases. These protocols run on specialized hardware

controllers on the CPU and CXL memory device.

The CXL.mem protocol enables the above described DM architecture i.e.,

cache-able load/store accesses from CPUs to pooled physically disaggregated

memory. (For the scope of this thesis, we focus only on the CXL.mem protocol.)

CXL.mem allows mapping remote memory into the system address space. A

last-level cache (LLC) miss to a CXL memory address is translated into re-

quests on a CXL port whose responses bring in the missing cachelines, as

shown in Fig. 2.3.

≻ Key benefit: CXL’s open standard enables the design of high-performance

memory systems, specialized for the needs of modern datacenter applications

[8, 70, 108, 114, 149].

Shared disaggregated memory: CXL 3.0 specification [34] introduced the

concept of coherent sharing of DM - called “shared FAM” (fabric attached mem-

ory). This provides the ability for CXL-attached memory to be coherently shared

across compute servers using hardware coherency. In other words, a given

region of CXL memory can be simultaneously accessed by more than one

compute server and with a guarantee that every compute server sees the most

up-to-date data at that location, without the need for software managed co-

ordination. This leads a to more efficient and performant way to use memory.

For example, in a scenario where many compute servers are accessing the

same data set (like in FaaS applications), using this CXL shared DM architec-

ture can provide huge performance improvements. We discuss more about the

CXL.mem shared DM coherence protocol in Sec. 2.2.2.

≻ Key benefit: Shared, coherent DM allows system designers to build cluster of

machines that can be employed to solve compute problems larger than a single

compute server through familiar, well-understood shared memory constructs.

2.2. Coherence protocols 17

2.2 Coherence protocols

As evidenced in NUMA and shared DM architectures, a region of memory,

can be shared by multiple processors. This essentially provides communication

among the processors through reads and writes to the shared data. The shared

data can also be held in caches in the processors memory hierarchy and hence

may be replicated in multiple caches. Because the view of memory held by

two different processors is through their individual caches, this introduces the

problem of keeping the data up to date in these caches. Coherence protocols

are algorithms, implemented in hardware, to allow caches to return the latest

value of memory for a request, thus making the caches invisible.

In this section, we delve into the design of these coherence protocols. Most

protocols in use today descend from the four-state protocol proposed in 1983

by J. R. Goodman [58]. The 4 stable states are commonly called: Modified (M),

Exclusive (E), Shared (S) and Invalid (I), with meaning of each state remaining

the same as defined in the original work. Coherence protocols also contain a

large number of transient coherence states, in addition to these handful stable

states [134]. These transient states arise since transitions from one stable state

to another is not atomic. At each step in a coherence transition, the coherence

controller usually changes the state of the block to a different transient state

that reflects that step in the transition.

Coherence invariants: To enforce memory consistency, coherence protocols

satisfy two key invariants [134]. The Single-Write-Multiple-Reader (SWMR)

invariant i.e., for any given memory location, at any given time, there is either a

single core that may write to it or some number of cores that may read from it.

The Data-Value invariant i.e., a read returns the value of the latest write to that

location. Coherence protocols that enforce these invariants make the caches

invisible and provide an atomic memory system that guarantees per-memory

location linearizability i.e., a write takes effect at some real time between its

invocation and response.

To summarize, the write-invalidate coherence protocols implemented in today’s

systems ensure a single writer by invalidating the copies of a cache line in all

other caches.

18 Chapter 2. Background

Directory-based coherence: The key to implementing a cache coherence

protocol is tracking the sharing state of cache blocks. The status of every cache

block of physical memory that is currently cached is kept in one location - the

directory. In modern systems, the directory is physically distributed, just like

memory (different requests go to different memories). In a straightforward man-

ner, the directory is distributed along with the memory i.e., each directory has

entries for all the memory addresses behind it. The coherence protocol directs

requests to go to different directories based on the memory address. Thus, the

coherence protocol always knows where to find the directory information for

any block of memory. The place where memory location and directory entry of

an address reside is known as the home node.

2.2.1 NUMA coherence

Recall that in a cache-coherent NUMA architecture, there are 2 levels of co-

herence protocols: an intra-processor protocol (responsible for local coherence

within a chip) and an inter-processor protocol (responsible for global coherence

of the entire system) as shown in Fig. 1.2. Requests that can be satisfied by the

intra-processor protocol do not interact with the inter-processor protocol; only

when a request cannot be satisfied within the processor chip, the request gets

promoted to the inter-processor protocol. The inter-chip coherence traffic is

carried over low-latency, high-bandwidth, point-to-point interconnects like Intel

QPI/UPI or AMD HyperTransport/InfinityFabric.

To summarize, in a multi-processor (multi-socket) NUMA systems, an inter-

processor coherence protocol is layered hierarchically over and above the intra-

processor coherence protocol [134]. Such a hierarchical organization enables

efficient scaling of the system.

2.2.2 DM coherence - CXL.mem

Recall, the CXL 3.0 specification defines the inter-server protocol for a hard-

ware coherent, shared DM architecture as shown in Fig. 1.2. Specifically, the

CXL.mem protocol specifies the interface between the processor and the mem-

2.3. DRAM overview 19

ory to read and write data to DM. CXL.mem is a memory technology agnostic

protocol and can support any memory technology - HBM, DDR, NVM etc. We

only provide the background pertinent to enable a coherent shared DM in this

thesis. We refer the reader to the full CXL specification [34] for further details.

CXL.mem allows the coherence directory to be located within the memory

server / device (referred to as Device coherence engine (Dcoh) in the CXL

specification). To support coherent shared DM, the CXL.mem protocol was

enhanced in CXL 3.0 to provide new inter-node coherence semantics - called

HDM-DB. This included new message types called Back-Invalidation Snoop

(BISnp) and Back Invalidation Response (BIRsp) and new dedicated channels

S2M BISNP and M2S BIRSP to send these messages. These new requests

allow sending invalidations from the directory on the memory server to com-

pute server caches which cache data in shared state and receive invalidation-

acknowledgment responses back from the compute server caches.

2.3 DRAM overview

Dynamic random access memory (DRAM), introduced by Robert Dennard at

IBM in the late 1960s has been the foundation of main memory as it provides

relatively large, fast and cost effective storage capacity. In this section, we

describe the DRAM organization, operation and more importantly the DRAM

error models and state-of-the-art error mitigation mechanisms.

2.3.1 DRAM fundamentals

DRAM structure: DRAM memory systems are organized hierarchically as

shown in Fig. 2.4. DRAMs store each bit of data in a smallest unit called a

cell. The cell comprises a storage capacitor and an access transistor. The

capacitor encodes the binary data value using the charge level of the capacitor.

The transistor is used to access the capacitors charge and read or modify the

stored charge.

A DRAM array organizes DRAM cells into a two-dimensional grid of rows and

20 Chapter 2. Background

columns (typically 512-1024 cells per dimension). A single DRAM chip contains

multiple banks of DRAM arrays which operate in parallel. Banks are further

organized into ranks which share command buses but have separate data

buses. A chip select signal is used to select a bank to issue a command.

Multiple banks in a rank operate in parallel and serve data independently to

match the data bus width aka channel. A typical memory system would consist

of multiple channels with completely independent DRAM devices, each having

separate data and address buses.

Figure 2.4 Detailed diagram showing the internal components and organization

of DRAM memory

Memory controller DRAMs are typically a passive device with no logic or

controllers to access the stored data. A memory controller, located within the

processor chip, interacts with the memory device over a memory bus. The

memory controller issues read and write operations to retrieve and store data

into the DRAM. The memory controller is also responsible for orchestrating all

other DRAM maintenance operations (e.g, initialization, calibration, refresh op-

erations to restore data into the leaky capacitors within the DRAM cells). These

operations are invoked through the use of DRAM commands, and DRAM man-

ufacturers consortium (JEDEC standards) clearly specify the timing constraints

surrounding their usage.

For high reliability memory systems required in datacenter servers, the memory

controller also performs error detection and correction of data retrieved from

the DRAM. These reliability mechanisms are discussed in Sec. 2.3.2.

2.3. DRAM overview 21

DRAM operation: First, we examine the basic circuitry structure within DRAMs.

Starting from the cell, the access transistor’s gate is manipulated by a control

signal known as the wordline. A common wordline connects the gates of all

access transistors in a row of the array. When the wordline is enabled, the

storage capacitor is connected to the bitline, so the charge stored in the storage

capacitor equalizes with that in the bitline. This process "reads" the data out of

the capacitor through the coupled transistors. A row of sense amplifiers (called

row buffers) is used to sense this charge and hold it temporarily for purpose of

transferring the data over the data bus. Subsequent requests to columns in this

activated row are served from the row buffer. Note that each bank has only one

global row buffer and hence only one row may be read from any given bank at a

time. A column access command transfers a number of columns (consecutive

bytes) to/from the row buffer. Since the read from the DRAM array is destructive

i.e., the charge in the capacitor of the cells is lost, a precharge operation writes

back contents from the sense amplifiers back to the corresponding row.

Now, we describe the commands issued by the memory controller to perform

the above DRAM operations. Row activation (ACT) command activates a row

within a bank by asserting the row’s wordline and allowing the sense amplifiers

to read the voltage. A row decoder circuitry decodes the issued row address

and activates the transistors of the corresponding row. Column access RD and

WR commands read and write to a given column within the open row. Bank

precharge (PRE) command precharges the currently open row within a bank

by de-asserting the wordline and resetting all bitlines.

Several other timings are specified for DRAM operation by the JECDEC stan-

dards like the required delay between issuing two consecutive commands

(tRCD, tRAS, tRP etc.) We refer the reader to the JEDEC DRAM specifications

[83] for a more detailed overview of standardized DRAM commands and timing.

2.3.2 DRAM errors and mitigation mechanisms

Having understood the components and operation of DRAMs, we now discuss

the observed DRAM failure models and the corresponding mitigation mecha-

nisms to handle these failures.

22 Chapter 2. Background

Figure 2.5 Error mitigation mechanisms in the DRAM hierarchy (on the left).

The inverted pyramid showing the increasing data that is lost if errors occur at

a level.

2.3.2.1 DRAM failure models:

DRAMs suffer from a broad range of failure mechanisms that can lead to

different types of errors. Fig. 2.5 shows the increasing data that is lost if

errors occur at a level. At the very basic level, DRAM devices are complicated

by the "dynamic" nature of their storage cells i.e., the capacitors storing the

charge in the DRAM are not perfect and leak charge. This naturally results in

data loss (data-retention errors) if the charge is not periodically restored i.e.,

refreshed. Further, DRAM cells can develop faults that are prevalent among

semiconductor devices like aging/wearout effects and random external events

(e.g., particle strikes, temperature variations). Cells can also experience faults

due to manufacturing defects like RowHammer [97], variable time data retention

[130, 153], stuck-at faults [132], etc. These errors are expected to become

worse with continued process technology scaling leading to increased errors.

2.3. DRAM overview 23

2.3.2.2 DRAM error mitigating mechanisms

Several error detection and correction mechanisms have been designed into

DRAM systems over the decades. Fig. 2.5, left shows the mitigation mecha-

nisms introduced to correct errors at each level of the DRAM hierarchy.

≻ In-DRAM error mitigation: The following mechanisms are designed to

operate within DRAM chip and are invisible to other external components.

(i) On-die ECC: To correct single-bit error within a DRAM die, DRAM manu-

facturers employ on-die ECC as a solution. On-die ECC is kept as simple

and efficient as possible, since this is implemented within a DRAM die

that is not optimized for logic operations. DRAM manufacturers today use

extremely basic single-error correcting Hamming codes.

(ii) Row-column sparing: DRAM manufacturers provision extra rows and

columns within storage arrays in order to provide replacements in the

event that some are defective. By employing sparing, DRAM manufac-

turers are able to tolerate imperfections during manufacturing, thereby

improving manufacturing yield at the expense of some area overhead.

≻ Rank-level ECC: System designers integrate an ECC mechanisms within

the memory controller at a rank level. These ECC mechanisms use data blocks

at the granularity of the cache lines to provide stronger error correction. ECC

memory modules have additional DRAM chips and wider data buses on the

memory channels to store and retrieve the ECC bits from the DRAM. DDR4

ECC memory are provisioned with 12.5% redundancy while newer DDR5 ECC

memory increases this to 25% redundancy.

(i) SECDED ECC: Single error correcting, double error detecting (SECDED)

ECC is the simplest rank-level ECC mechanism that is capable of correct-

ing one error and detecting two errors within each cache line. SECDED

ECC stores 8 additional bits in an ECC DRAM, per 64 bits of data using

a (72,64) Hamming code.SECDED ECC is employed to address higher

error rates than on-die ECC and it can correct errors caused by other

components failures in the access path to DRAM (such as burst errors).

(ii) Chipkill ECC: Chipkill is a rank level ECC mechanism and a generic term

for a solution that guarantees recovery from failure of an entire DRAM

24 Chapter 2. Background

chip within a rank. Several approaches exist to implement Chipkill ECC.

Current commercial Chipkill schemes utilize single tiered ECC mecha-

nisms to operate with conventional ECC memory modules i.e., the data

retrieved in a single access has enough information to both detect and

correct a specified number of errors. This is achieved by using interleav-

ing SECDED codes, using Reed-Solomon codes with symbol sizes that

align to entire DRAM chips [6, 7]. There have also been proposals to

achieve Chipkill with multi-tier ECC codes [87, 89, 118, 135, 177, 191].

In these schemes a first tier performs error detection and a second tier

performs error correction. Due to the increase in complexity incurred for

such designs, they have not seen wider industry adoption.

≻ Channel-level ECC: To provide even higher DRAM reliability and protect

against channel level failures (or any errors occurring to any components within

a channel), sophisticated newer techniques are being employed at the memory

controller. These techniques resemble well-known reliability schemes employed

in storage media - Redundant Array of Independent Disks (RAID). In the RAID

parlance, these implemented scheme may be loosely associated with various

RAID levels, where a channel takes the role of the disk (although the technolo-

gies and system considerations used to implement each are different).

(i) Intel Memory Mirroring [74]: This technique uses 2 channels operated

by a single memory controller in a RAID-1 layout i.e., memory is replicated

on DRAMs in two channels that are operated by a single controller. The

primary channel is used to read memory. The secondary channel’s copy

is used as a backup and is read only on the failure of the primary. The

memory region that is replicated is fixed at boot time. The OS, particu-

larly Linux, uses the mirrored memory address range for kernel memory

allocations only. The OS does not make the mirrored memory available

to applications.

Architecturally, each Intel Xeon processor supports up to two mirror

ranges, one mirror range per memory controller. Each mirror range size

can be defined using 64MB granularity intervals. The OS discovers the

mirrored address ranges using a firmware-OS interface. An existing UEFI

call GetMemoryMap() returns to the OS all the address ranges presented

by the platform. In the returned memory map, the mirrored memory

2.4. FaaS overview 25

range is indicated with EFI_MEMORY_MORE_RELIABLE attribute in the

EFI_MEMORY_DESCRIPTOR field.

(ii) IBM RAIM [119]: This technique uses 5 ganged channels in a RAID-3

layout. The memory system is organized so that five memory channels

are used in any given read or write requests. The fifth channel stores a

XOR of the corresponding data from the first four channels. After the data

from the five channels is formatted into frames, CRC is added to each

channel independently. The CRC is used to detect whether there are any

errors within a channel. If there is a CRC mismatch when the data is read

from the DRAMs, the XOR redundant information will be used to detect

and correct errors. However, IBM RAIM forces 256 byte reads and write

from memory (4 channels each storing a cache line). This can negatively

impact performance due to overfetch.

2.4 FaaS overview

Function as a service (FaaS), also known as serverless computing, is a pro-

gramming model for deploying applications in the cloud. FaaS enables devel-

opers to execute code in a cloud-provider’s datacenter without server man-

agement. Almost all major cloud-providers today offer the FaaS deployment

model such as Amazon’s AWS Lambda, Google Cloud Functions, and Microsoft

Azure Functions. A panoply of applications from popular domains like multi-

media processing (video/image), machine learning, scientific computing, web

applications, HPC, etc., have been ported to this model for its several benefits

[35, 44, 96, 192].

2.4.1 FaaS fundamentals

In FaaS, a monolithic application is decomposed into a set of independent

segments called functions. A FaaS orchestration service such as AWS Step

Functions [4], Azure Durable Functions [126], or Google Workflows [60], allows

developers to define state machine workflows that compose multiple individual

functions (“function chains”). State machine workflows allow defining all major

26 Chapter 2. Background

Figure 2.6 A FaaS application state machine workflow, showing the interaction

of the component functions with the object store and an instance of a schedule

as executed on a pool of compute servers - C1, C2, C3.

function communication patterns like producer-consumer, map-reduce, pipeline,

broadcast-gather and scatter-gather [44]. On an invocation request / event, the

workflow of functions is triggered to execute the application. Scheduling the

workflow and managing compute resources for the application execution is the

responsibility of the cloud provider.

2.4.1.1 Execution of FaaS applications

An example of a real world use case of the FaaS model [100] is show in Fig. 2.6.

In this use case of sentiment analysis / opinion mining, the FaaS application

evaluates the sentiment of the customer reviews for the many products and

services of a company. We walk through its execution as an illustrative example

to explain the working of FaaS applications.

Invocation: The workflow is triggered when the collated raw reviews file (csv)

is uploaded to the object store. Upon receiving an invocation trigger, a runtime

scheduler like Kubernetes [101] collects the requested inputs and invokes the

functions in the workflow, on compute servers, as per the state machine. To

invoke a function, its code and its dependent libraries are instantiated and initial-

ized to run inside a microVM or container [182]. In our example, the first function

read_csv is scheduled on compute server C1, the subsequent pipelined func-

tion sentiment_analysis is scheduled on compute server C2 and the next set of

2.4. FaaS overview 27

broadcast functions publish_to_sns and write_to_db are scheduled on compute

servers C3 and C1 respectively.

Execution: Each function running on the compute servers executes in three

phases. First, the function executes a basic operation called get to read the

input from an external server which stores all data as blobs/objects. In our

example, the get operation in read_csv downloads the raw_data.csv from the

remote S3 server into the compute server memory. Second, the computation

phase processes the input data by solely reading data from the local memory.

Finally, post-computation, the function executes another operation called put

which upload the function output to the external object store. In our example,

the put operation in read_csv uploads parsed_reviews object from the compute

server into a remote S3 server.

Note: This example demonstrates the execution using today’s production object

stores that use disk storage and general purpose interconnect like ethernet

to explain the working of get and put operations. These operations can also

be implemented using other high-performance techniques, depending on the

available underlying technology. We examine this in more detail in Chapter 4.

Completion: When the function invocation finishes executing, a Kubernetes

agent on the compute server (called kubelet) notifies the runtime scheduler,

which then processes the subsequent steps. If the function did not complete

execution or exited with a non-zero status, the function is re-scheduled and

invoked again with the same input.

2.4.1.2 Features and benefits of the FaaS model

The main features and benefits of the FaaS model are:

Stateless functions: The functions do not retain state across invocations and

each invocation is completely independent from each other. Functions employ

external object store services such as Amazon S3 [3], Azure Blob Storage [128]

or Google Cloud Object Storage [59] to store state that can be used across

requests.

On-demand execution: In contrast to other computing models, a FaaS function

28 Chapter 2. Background

instance is created only when the function is called and is terminated after

processing a request. Some providers also allow developers to provision pre-

initialized function instances to reduce delays in processing requests [181].

However there is no guarantee that requests would be directed to the same

instance of the functions and therefore any data written to server local storage

would be lost.

Automatic Scaling: FaaS functions are inherently scalable as additional in-

stances can be created to respond to increased invocation load. Developers

don’t have to worry about creating contingencies or provisioning for high traffic

or heavy use. The FaaS provider directly handles all of the scaling concerns.

Efficiency for the cloud provider: Cloud providers are able to co-locate

thousands of independent function instances on a single physical server, thus

achieving high server utilization. A high degree of co-location is possible be-

cause most functions are invoked relatively infrequently and execute for a very

short amount of time. The cloud provider dynamically schedules a function

invocation on a fleet of compute server with great flexibility. This is achieved

by employing frameworks like Kubernetes [101] that correctly and efficiently

schedule functions on any available compute servers.

Pay for what you use: Developers pay only for the resources used during the

function execution (in time units of hundreds of milliseconds) and not for any

idle time. This fine-grained billing model reduces costs to deploy to the cloud

and avoids any upfront cost of renting large units such as servers or VMs.

Separation of concerns: Developers focus on writing efficient, performant and

correct function code with high level abstraction API of underlying infrastructure.

The cloud provider is responsible for the operational concerns such as provi-

sioning, configuring, monitoring and managing the compute servers, memory,

network, storage.

2.4.2 Fault tolerance in FaaS

Fault-tolerance is a key tenet of the FaaS model. The use of stateless func-

tions already makes the functions resilient to failures of compute servers. FaaS

2.5. Summary 29

providers also provide error handling so that applications don’t just silently crash

without a way to react to failures. If a functions fails partway during execution,

the automatic retry mechanism is initiated by the provider to re-execute the

same function [11, 32, 52]. This retry model simplifies the recovery mechanism

and can handle any kind of failures encountered - software crashes, intermit-

tent hardware errors, transient network glitches, permanent compute server

failures etc. To avoid side effects with the retry mechanism, FaaS providers

ask developers to write idempotent functions i.e., the functions give the same

output even when called multiple times with the same input.

Semantically speaking, the retry mechanism ensures that functions are exe-

cuted at-least once. The idempotence property logically ensures at-most once

execution. Therefore, combining retry-based model with idempotent functions

guarantees exactly-once execution. Several frameworks and mechanisms ex-

ist to make functions idempotent or to directly ensure functions are executed

exactly-once [111, 168, 194].

In short, the FaaS model is designed to be resilient to all common models of

failures in the datacenter. It handles all failures comprehensively by simply

retrying the execution of the idempotent functions.

2.5 Summary

In summary, memory in modern datacenter systems is shared between multiple

processor chips. The shared memory itself is also physically distributed as seen

in NUMA and DM organizations. Hardware coherence protocols are employed

at each level (intra-processor, inter-processor, inter-server) to keep the caches

up-to-date and ensure coherent access to data in memory from any processor.

The main main memory itself is composed of volatile DRAMs. These are in-

creasingly vulnerable to failures at any level in the memory subsystem. Current

mechanisms have been incrementally protecting against failures rising up in the

memory hierarchy and thereby protecting larger granularity of failures. Each

of these mechanisms is adding additional capacity overheads and negatively

impacting performance.

30 Chapter 2. Background

Datacenter providers and application developers have widely adopted the fault-

tolerant FaaS cloud deployment to make applications scalable and resilient.

FaaS applications are compositions of stateless functions. This model inevitably

forces a split of the state which is maintained in a separate remote object store.

The functions are orchestrated and scheduled dynamically by the cloud provider

on a fleet of compute servers. The functions when executing on the compute

servers read/write the state from/to the object store.

3
Dvé: Improving DRAM Reliability and
Performance On-Demand via Coherent
Replication

In this chapter, we present Dvé - a unique design point in the DRAM memory

reliability design space. It provides 3 key benefits: (i) guarantees improved

DRAM reliability (ii) provides memory performance gains (iii) the ability to avail

higher on-demand reliability. We now delve into how Dvé achieves each of

these in detail.

3.1 Overview

For servers or systems with high-value data like in finance, automotive, and

healthcare, system reliability is of utmost importance. Improving memory relia-

bility has been key to improving overall system reliability. Field studies of mem-

ory in datacenters [122, 162, 166] and supercomputers [16, 71, 170, 171, 172]

have reported patterns of larger granularity memory errors/failures and unex-

pected DRAM failure modes [97], corroborating the need for improved memory

reliability.

There have been several techniques and proposals for improving the fault tol-

erance of DRAM memory. These works have largely focused on incrementally

increasing the efficiency and scope of error control mechanisms in memory

subsystems. DRAM memory schemes initially only targeted cell failures and

31

32 Chapter 3. Dvé

progressively evolved to handle chip, DIMM, and channel failures. Primarily,

these schemes pad data with error correcting code (ECC) and distribute the re-

sulting codeword on a set of components such that, on a partial failure, data can

be recovered from the remaining fault-free data and the padded error correction

code.

One notable step in this progression is the recent body of work that has ad-

vocated the decoupling of error detection from correction by breaking down

DRAM fault tolerance into two tiers [87, 89, 118, 135, 177, 191]. These works

add a check code per codeword for detecting errors in the first stage and an

error correction mechanism at a larger granularity in the second stage. Doing

so allows for deploying more powerful ECC codes to recover from a larger class

of errors. This decoupling also allows storing ECC bits elsewhere in memory

and thus does not impose restrictions on the configuration and operation of

DRAM DIMMs.

In this work, we take inspiration from the two-tier approach and explore a novel

extrapolation. We propose Dvé1, a hardware-driven replication mechanism

with the following important features.

1. Dvé leverages ECC codewords and other existing mechanisms for error

detection but provides recovery from a detected error by reading from a

replica of the data, instead of reconstructing data using the ECC bits.

2. It significantly improves memory reliability by keeping replicas as far apart

and disjoint as possible – replicating data across 2 different sockets on

the same system, thereby tolerating errors anywhere in the entire memory

path (controllers, channels, DIMMs, and DRAM chips).

3. Dvé introduces Coherent Replication, a technique that builds on top of

existing cache coherence protocols for not only keeping the data and

replica in sync, but also providing coherent access to the replicas during

fault-free operation. In doing so, Dvé alleviates some of the NUMA latency

overheads as data can be accessed at the nearest replica memory. It also

provides improved memory access bandwidth by providing two endpoints

to access data.
1Dvé (Sanskrit) translates to the two, referring here to the dual benefits of replication.

3.1. Overview 33

4. Dvé can be employed on-demand by taking advantage of the memory

that is often underutilized in large installations ([82, 113, 145, 151]), thus

allowing flexibility between capacity and reliability.

Figure 3.1 Comparison of DRAM reliability designs on the 3 goodness metrics.

A New Tradeoff. Fig. 3.1 compares DRAM RAS mechanisms: SEC-DED (bit

level error protection), Chipkill (chip level error protection), and Dvé across the

goodness metrics of reliability, performance and effective capacity (inverse of

capacity overheads).

Dvé achieves higher reliability (at least 4× lower uncorrected error rate than

Chipkill) as its design is more robust to failures and can detect/correct a larger

granularity of errors. The only Achilles heel for Dvé is in the case of simulta-

neous failure in exactly the same location on a pair of completely independent

replicated memory components, the occurrence of which is lower in probability

than 2 DRAM devices failing in the same memory rank as in the case of Chipkill.

Thus, Dvé provides stronger protection against memory errors.

Typically, error detection/correction imposes a performance overhead. Many

manufacturers concede that Chipkill ECC DRAM will be roughly 2-3% slower

than non-ECC DRAM [160]. Although Dvé still requires error detection, by

providing two independent points of access to the data, it provides performance

improvement in a multi-socket NUMA organization.

Dvé uses simple data replication with higher capacity overheads (lowering

effective capacity to 43.75% compared to 85% for Chipkill). While the capacity

34 Chapter 3. Dvé

overheads for Chipkill are strictly fixed at design time, Dvé overheads are

applicable only when employed on-demand at runtime (for example, when

memory is underutilized).

Contributions. We introduce Dvé, a hardware-driven replication mechanism

which provides the dual benefit of improved memory reliability and performance.

Specifically:

1. We explore a unique design point which trades off reduced memory ca-

pacity for higher reliability and performance by replicating data blocks

across two sockets of a cache-coherent NUMA system

2. We analytically quantify Dvé’s reliability benefits and show that it provides

lower uncorrectable and undetectable error rate over Chipkill ECC and

thus provides higher memory reliability. Similarly, Dvé in conjunction with

Chipkill ECC provides 2 orders of magnitude higher reliability over IBM

RAIM [119]. Further, Dvé’s thermal risk aware mapping lowers DUE by at

least 11% over Intel memory mirroring [74].

3. We propose Coherent Replication, a technique that builds on top of ex-

isting protocols to not only maintain the replicas in sync (required for

reliability), but also provide coherent access to both of the replicas during

common-case fault-free operation (for performance).

4. To allow for flexibility between capacity and reliability, we propose a

hardware-software co-design approach to enable/disable replication when

desired at runtime.

5. Our experiments indicate that Dvé provides performance improvements

of between 5%-117% across 20 workloads over a dual-socket NUMA

system, and between 3%-107% over an improved (hypothetical) version

of Intel’s memory mirroring scheme.

3.2 Motivation

We first motivate the need for improved DRAM reliability to combat: (a) pro-

jected increase in errors caused by DRAM design trends; and (b) DRAM failures

3.2. Motivation 35

caused by any part of the DRAM subsystem. Secondly, we motivate the need

(and opportunity) for providing improved memory reliability on demand. Finally,

we summarize by identifying the limitations of existing approaches.

Figure 3.2 Anatomy of RAS features in memory

3.2.1 Growing DRAM error rates

The memory subsystem has several modules built-in at various points in the

hierarchy (e.g., cell, rank, bank, chip, memory controller) to improve reliability

of the DRAM as highlighted in red in Fig. 3.2. We analyze these current DRAM

specs/chips and state-of-the-art error protection mechanisms and observe that

these would be inadequate for handling the nature of faults/errors seen in field

studies.

Cell errors and their increasingly costly mitigation. DDR5 DRAM chips

are expected to have 4 times the memory capacity per DRAM chip, in line

with the trend of miniaturization and higher density of DRAM. To combat the

increase in cell fault rates due to smaller cell geometry, increased variability

of manufacturing, and additional refresh pressure, DDR5 includes simple in-

DRAM (on-die) ECC [124]. DDR5 DIMMs have also doubled the number of error

correcting bits compared to DDR4 DIMMs, i.e., from 8-bit to 16-bit ECC for 64-

bit data (25%) [124]. Several mechanisms already propose row/column sparing

and selective replication [25], [137] to tolerate higher number of faulty cells

caused during manufacturing. The capacity overheads (provisioned invisible

36 Chapter 3. Dvé

redundant capacity) required to maintain reliability is growing.

Non-cell errors are becoming important. Studies have shown that unpre-

dictable large multi-bit DRAM failures can occur due to faults in the chip-internal

circuitry [170] that can affect multiple banks, rows, etc. within a DRAM chip.

To handle such DRAM chip errors, several variants of Chipkill 2 solutions have

been developed. Further studies have observed shared board-level circuitry

failures that cause cascading errors, rendering multiple DRAM chips (that share

circuitry within a DIMM) erroneous or inaccessible [86]. To cope with such fail-

ures Bamboo ECC [94] and Virtualized ECC [191] were proposed to handle

multi-pin and multi-chip failures. In addition, studies have shown that faults out-

side the DIMM such as faults in memory controller logic that interacts with the

external DRAM subsystem, errors in the channel, or electrical disturbances also

affect the reliability of DRAM memory [95, 122, 166]. These studies suggest

that a wide variety of memory failures can occur and existing mechanisms are

insufficient to handle these errors because they co-locate data and correction

codes on the same channel.

To reduce channel errors, DDR5 memory uses a host of bus reliability mecha-

nisms like command/address parity checks, bus CRC, gear down mode. DDR5

chips are to feature delay-locked loop and forward feedback equalization to

handle channel errors that occur because of the higher DDR frequencies [171].

These bus error checks only detect errors and perform transaction retry; they

cannot tolerate hard channel errors.

Stronger ECC codes with longer codewords were introduced to detect and

correct channel errors in [87], [95]. Increasing the codeword length is also

problematic, as the decoder complexity increases more than linearly with the

codeword length [20]. Further, sophisticated techniques use 2 channels in a

RAID-1 layout (Intel Memory Mirroring [74]) or 5 “ganged” channels in RAID-3

layout (IBM RAIM [119]) to tolerate complete channel failures. However, each

of these techniques limits reliability and performance benefits. RAIM’s ganged

channel mode forces 256 byte memory reads and writes which negatively im-

pacts performance [196] and leaves it susceptible to any errors in the single

RAIM controller. Although Intel’s mirroring scheme replicates memory between

2Chipkill is a generic term for a solution that guarantees recovery from failure of an entire DRAM chip.

3.2. Motivation 37

channels within a controller, the secondary channel’s copy is used as a backup

and is read only on the failure of the primary – thus, providing no performance

benefits despite the existence of data replicas. Further, Intel’s approach lo-

calizes replicas to a single socket and a single memory controller leaving it

susceptible to any faults in the controller or its subsystem. Additionally, the

memory that is replicated is fixed at boot time and limited to the OS kernel

memory.

DRAM reliability is also impacted by external factors like temperature, requiring

sufficient timing slack margins while operating DRAMs [104] or throttling of

requests to avoid thermal emergencies [112]. DRAM disturbance faults or row-

hammer faults [97] demonstrate that new and unexpected multi-bit failures may

occur while in operation. Mitigations include more frequent memory refresh for

frequently accessed rows which could cause performance degradation.

3.2.2 Need for on-demand memory reliability

The mitigation techniques thus far have fixed area and logic overheads (at

design time) for providing memory reliability. We observe the possibility of

using idle memory capacity to opportunistically improve memory reliability. To

accomplish this, we motivate the need for such a reliability service to be flexible

and allocatable on-demand.

Large scale memory underutilization is prevalent. Several studies point to

the phenomenon of memory underutilization in HPC systems [82], [145] and

in cloud datacenters (e.g., Alibaba-[29], [113], Google-[151]). These works

report that at least 50% of the memory is idle 90% of the time. There exists a

large gap between a node’s maximum/worst-case memory utilization and the

common-case memory utilization; i.e., a few workloads have high utilization

while most other workloads have significantly lower utilization. However, mem-

ory resources are often over-provisioned due to peak estimation. Datacenter

operators procure systems with a view to keeping the machines homogeneous

with respect to the workloads or to improve the system’s capability to solve

large problem sizes, which is an important figure of merit in HPC systems [145].

The bulk of applications, that are not memory capacity intensive, would benefit

38 Chapter 3. Dvé

from increased memory reliability and improved memory access latency[145].

For example, capacity-agnostic long running HPC applications would greatly

benefit from increased fault tolerance to memory errors; stateless cloud ap-

plications can provide high availability selectively for just the data regions of

their memory. Providing this flexibility between capacity and reliability allows

deploying large numbers of commodity DRAMs or lower reliability DRAMs for

high capacity while still being able to turn on/off higher reliability on demand.

A central observation in our work is that servers under-utilize their memory

capacity, and applications can exploit this idle memory to boost performance

and reliability. Industry products like Intel Memory Mirroring [74], that relinquish

half their memory capacity for high reliability, confirm that this observation is

valid, but has only been partially exploited.

Error Rates increase as DRAMs age. Another need for on-demand reliability

is to combat the higher error rates observed as DRAMs age and suffer from

wear-out faults[47]. This is due to degradation of retention time and increased

sensing delays. Memory systems today do not allow for flexibly boosting relia-

bility, requiring periodic memory replacement.

Summary. State-of-the-art DRAM error protection mechanisms suffer from the

following limitations.

1. Existing mechanisms jeopardize the correction capability by putting cor-

rection mechanisms in the same “basket” as data. Given that failures can

occur at any level in the memory subsystem, current mechanisms are

therefore vulnerable to failures beyond a channel, including errors in the

memory controller.

2. They trade off reduced error detection capability for some amount of cor-

rection capability which limits their effectiveness to detect more errors

(e.g., designing for Double Symbol Correction before Triple Symbol De-

tection).

3. Existing mechanisms typically impact performance negatively. Using

Chipkill ECC DRAM reduces performance by 2-3% [160] over non-ECC

DRAMs. Even contemporary reliability techniques like Virtualized ECC

[191] and Bamboo ECC [94] reduce performance further by 3-9% and

3.3. Dvé 39

2-10% respectively. Further, alleviating temperature induced effects and

row hammer mitigations tend to hurt performance.

4. They lack flexibility to provide memory reliability on demand by adapting

to workloads requirements.

3.3 Dvé

3.3.1 Design

The variety and the granularity of DRAM errors are increasing. Correcting all

of these errors demands a robust mechanism. We argue for a broadsword

approach to error correction that is decoupled from error detection, and can

correct errors of any granularity. We advocate for changing the perspective of

DRAM protection from an incremental, short-sighted view to a holistic approach

leveraging the time-tested end-to-end argument. We argue for protecting mem-

ory at the highest end point of memory (i.e., at the memory controller level),

thereby subsuming all other types of errors.

Figure 3.3 Dvé replication schematic. Data is replicated across DRAM memory

on two-sockets of a cache-coherent NUMA system i.e., data replicas are kept

as far apart and disjoint as possible, within a server.

40 Chapter 3. Dvé

Our solution, Dvé is a hardware-driven replication scheme for achieving not

only reliability but also performance. Dvé performs memory replication on

two memory controllers located on different cache-coherent NUMA nodes (as

shown in Fig. 3.3); when a dirty block is written back to its home memory node,

it is also written to its replica. Using a different “basket” for recovery allows us to

recover from a wide variety and granularity of failures. Indeed, Dvé can tolerate

large multi-bit errors due to memory controller logic failure, bus failures as well

as any failures in shared components in the hierarchy.

Because Dvé relies on a replica for correction it needs to store only error detec-

tion codes. Therefore, it requires only error detection circuitry that is simpler to

build as it involves computation of just the error-locator polynomial (error cor-

rection also involves computing the extra error-evaluator polynomial for symbol

based codes [19]). The extra code space available as a result of forgoing the

correction code can be used to store stronger detection codes for detecting

larger number and/or larger granularity of errors. Along with ECC based detec-

tion, Dvé can rely on any new and/or existing fault detection techniques, such

as CRC or parity present in the DDR4 spec [158], and additional hardware and

firmware diagnostic capabilities like temperature sensors, clock skew detection

to mark failed components (Fig. 3.2).

Dvé’s replication proves advantageous in several other scenarios as well. Map-

ping replicated data onto DIMMs with different thermal properties – e.g., data

on a hot DIMM/chip replicated on a relatively cooler DIMM/chip on the other

socket – ensures reduced temperature induced failures. Row hammer errors

can be mitigated by load balancing requests between the independent replicas.

Sec. 3.3.2 quantifies the reliability benefits of Dvé using failure rates from field

studies.

While performance penalties are a problem for existing schemes, in the case of

Dvé, the presence of the replica in another NUMA node provides an opportunity

to boost performance. Note that in order to ensure strict recovery semantics,

the data and its replica needs to be kept consistent at all times. Happily, a

replica that is kept strongly consistent allows for the replica to be accessed

by reads even during fault-free operation. In other words, it allows for a read

request to be potentially serviced from the nearest replica to mitigate some of

3.3. Dvé 41

the NUMA latency overheads and also improve memory bandwidth. In Dvé,

we realize this via Coherent Replication (Sec. 3.3.5), a technique that extends

existing coherence protocols to keep the data and the replica consistent, while

providing coherent access to both the data and the replica during fault-free

operation.

In Dvé, each physical address is mapped to a replica physical address. This

can either be a fixed function mapping or a flexible table-based mapping. A

flexible mapping allows for providing memory reliability on demand and requires

the OS to map each allocated physical page to a replica physical page. Using

the OS memory allocator’s understanding of the system’s memory topology,

replica page pairs are made such that they exist on memory adjoining different

sockets. A single system-wide OS managed replica map table (RMT) maps a

physical page to its corresponding replica page. If an entry does not exist in

the RMT, Dvé seamlessly falls back to using a single copy. On the other hand,

a fixed function mapping3 benefits from fast translation to replica address and

works well if the entire memory space is being replicated en masse.

Unless stated otherwise, we assume that all memory is replicated using a fixed

function mapping and that there is one replica for every data item (i.e., two

copies). The core workings of Dvé are unchanged even with a table based

mapping, which would require an additional lookup into the RMT to locate the

replica address. We discuss the details of such a flexible mapping system in

Sec. 3.4.1.

3.3.2 Quantifying the reliability of Dvé

Dvé’s robust design can recover from a large breadth of memory related errors

that can be detected. This is because Dvé can simply adopt differing bits

from the replica, re-compute the code, and confirm it matches. This provides

3a fixed mapping is a static direct-mapped function of the form f : p(S, Ro, Ra, Ba, Co, Ch) →
pr(S

′, Ro′, Ra′, Ba′, Co′, Ch′), ∀p, pr ∈ P where p, pr are a physical addresses in P and
S, Ro, Ra, Ba, Co, Ch correspond to socket number, row, rank, bank, column, channel respec-
tively. An example for such a function which we use in this work, is given by f(p) = p

L + 1 – (2 ∗ S)
where L is page size. The function considers consecutive physical pages interleaved between
sockets and maps to a replica page on the other socket but retains the same DRAM internal
mapping.

42 Chapter 3. Dvé

Table 3.1 DUE and SDC rates (per billion hours of operation) and improvement.
† symbol shows temperature scaled FIT rate

Scheme DUE SDC

Rate (lower is better) Impr. Rate (lower is better) Impr.

Chipkill 10–2 – 3.1× 10–10 –

Dvé+DSD 2.5× 10–3 4× 6.3× 10–10 0.49×

Dvé+TSD 2.5× 10–3 4× 2.5× 10–16 ~106×

IBM RAIM 1.5× 10–14 – 4.0× 10–10 –

Dvé+Chipkill 8.7× 10–17 172× 6.3× 10–10 0.63×

Chipkill† 2.2× 10–2 – 1.0× 10–9 –

Intel+TSD† 5.9× 10–3 3.72× 1.1× 10–15 ~106×

Dvé+TSD† 5.3× 10–3 4.15× 1.1× 10–15 ~106×

asymptotically better reliability than any ECC based correction scheme. We

now quantify the reliability improvements.

DRAM reliability mechanisms use Forward Error Correction (like ECC) which

add redundant information so that data can be recovered when errors are

encountered. Block codes that work on fixed-size blocks or “symbols” are

used to allow encoding/decoding in polynomial time. Various classical block

codes such as Hamming codes, Reed-Solomon codes, BCH codes apply the

algebraic properties of Finite (Galois) Field Arithmetic to correct and detect

errors in DRAM. These error control systems can have one of the following

outcomes: (a) corrected error (CE), (b) detected but uncorrected (DUE) error,

or (c) suffer Silent Data Corruptions (SDC).

Comparative Case Studies: For this, we analytically model and quantify relia-

bility improvements of Dvé using DUE, SDC rates with a uniform DRAM device

FIT rate of 66.1. This rate was reported in the empirical field study of DRAM

failure is the Jaguar HPC cluster at Oak Ridge National Laboratories [170] and

is widely used is DRAM system failure modeling. For a fair comparison, al-

though Dvé can use any detection code, we equip Dvé with a similar detection

capability as the scheme being compared against.

The analytical modeling computes overall system reliability, given the reliability

of the individual DRAM device components, and the configuration that makes up

the whole memory system (also known as structural properties). This reliability-

3.3. Dvé 43

wise configurations of the devices can be modeled in several ways, depending

on the arrangement i.e., series, parallel, combined complex configuration, k-

out-n parallel etc. [106]. In this modeling the DRAM devices are assumed

to be statistically independent. This DRAM system modeling and failure rate

calculation is similar to prior work [174].

3.3.2.1 Comparison to Chipkill ECC

Consider a system with 32 single rank ECC DIMMs, each DIMM containing 9

DRAM chips. The baseline Chipkill ECC can tolerate one failed chip per rank4.

For Dvé the 9th chip is modeled in 2 ways:

(i) equipped with detection code similar to the baseline (DSD)

(ii) equipped with stronger detection code (TSD)5; using the extra capacity

obtained by relinquishing the correction code present in the baseline

DUE rate: A Chipkill system fails to correct an error if 2 chips fail simultaneously

within a single DIMM6 inside a scrub interval which is given by [9× 66.1× 8×
66.1× 10–9]× 32 (≈ 10–2) in every billion hours of operation.

Each model imposes certain constraints on the chip failures that are uncor-

rectable; more constraints lead to a lower uncorrectable rate. In Dvé, the

system fails to correct if 2 corresponding chips in the same position on two

DIMMs in the corresponding rank fail together inside a scrub interval. This is

because in Dvé the original data can still be recovered, even if both the replicas

independently suffer a DUE, by using a combination of both the replica symbols.

This process of error decoding and recovery is explained in Sec. 3.3.2.4. The

DUE rate of this is given by [9×66.1×1×66.1×10–9]×32×2 (≈ 2.5×10–3)

per billion hours of operation.

Thus, Dvé provides 4× lower DUE rate than a Chipkill system. It is worth noting

that this number is irrespective of the detection code and is only a factor of the

number of replicas.

4Assuming 8-bit symbol based RS(18,16,8) code with SSC-DSD (Single Symbol Correct-
Double Symbol Detect), organized as in Virtualized ECC [191]

5Triple Symbol Detect (TSD) provided using 16-bit Reed-Solomon code as in Multi-ECC [87]
6Chipkill ECC is per rank. This being a single rank DIMM, failure of the rank implies failure

of the DIMM.

44 Chapter 3. Dvé

SDC rate: A Chipkill system potentially fails to detect an error if three or more

chips fail simultaneously within a DIMM inside a scrub interval. A simultaneous

three device failure probability is given by [9×66.1×8×66.1×10–9×7×66.1×
10–9]× 32 (≈ 4.6× 10–9). The probability of DSD code failing to detect three

chip failure is 6.9% [189]. Thus, overall SDC is alteast (4.6 × 10–9 × 0.069)

per billion hours of operation.

For Dvé the SDC rate using a DSD code is twice that of Chipkill since we

use double the number of DIMMs for replication and a SDC error can occur in

either replica. However, with a TSD code this number reduces drastically as

the detection potentially fails only if four or more chips fail simultaneously within

a single DIMM.

For even better detection options, low-overhead highly-efficient codes [19]

which come closer to reaching the theoretical Shannon limit can be employed.

Alternatively, incremental multi-set log hashes [28] can also be used to detect

errors. We leave such options for future work.

3.3.2.2 Comparison to IBM RAIM

While Chipkill ECC was not designed to tolerate channel failures, a high re-

liability system such as IBM RAIM provides a more outright design point for

comparison. Recall RAIM uses Chipkill ECC DIMMs with RAID-3 organization

across 5 channels; striping four cache lines across four channels and adding

redundant diff-MDS ECC code [103] in the fifth channel to correct upto 1 entire

channel failure.

We assume 5 RAIM channels each with 8 Chipkill ECC DIMMs and Dvé

equipped with 2 replicated channels with 32 Chipkill ECC DIMMs each on

different NUMA nodes.

DUE rate: RAIM fails to correct an error if 2 two corresponding Chipkill DIMMs

on 2 channels (out of the 5 channels) fail together. Thus, the DUE is calculated

as [(1st Chipkill DUE×8)×(4)×(2nd Chipkill DUE×1)]×5(≈ 1.5×10–14)
per billion hours of operation.

Dvé+Chipkill fails to correct an error only if 2 pairs of chips in the same position

3.3. Dvé 45

on two DIMMs fail together which is given by [9× 66.1× 8× 66.1× 10–9× 1×
66.1× 10–9 × 1× 66.1× 10–9]× 32× 2 (≈ 8.79× 10–17) per billion hours of

operation. Hence, Dvé+Chipkill provides 172.4× (2 orders of magnitude) lower

DUE than RAIM.

SDC rate: Both systems suffer a SDC when Chipkill ECC fails to detect an

error. In addition, RAIM also potentially suffers an SDC when 3 channels fail

simultaneously. (Probability of this is significantly lower and hence both are

limited by Chipkill ECC SDC). Since the total number of DIMMs in Dvé is higher

Dvé+Chipkill (64 DIMMs, compared to 40 in RAIM) it has a marginally higher

SDC compared to RAIM.

3.3.2.3 Thermal effects on reliability

To factor in temperature effects on reliability we scale the FIT rate using Arrhe-

nius Equation [125]. There exists a 10◦C temperature gradient between the

DRAM chip closest and farthest to the fan [112], leading to non-uniform FIT

rates for the 9 chips within a DIMM scaled as [66.1, 74.3, 82.5, 90.7, 98.9, 107.1,

115.3, 123.5, 131.7]. Using a similar calculation as above, we see that although

overall DUE and SDC increases for baseline Chipkill system, Dvé+TSD is able

to lower DUE by 4.15× and provide significant reduction in SDC compared

to the temperature-factored Chipkill baseline by using a risk inverse mapping

(data in chips that have higher FIT rate are mapped to chips in the replica that

have lower FIT rate).

When compared to an Intel mirroring-like scheme (employing TSD for a fair

comparison), Dvé+TSD is able to lower DUE by 11% using the thermal risk

inverse mapping while the Intel mirroring scheme, despite the presence of

replicas, does not. While the analysis above exploits a non-uniform thermal

distribution across chips in a rank, some boards may exhibit a non-uniform

thermal profile across ranks, e.g., ranks closer to the processor may exhibit

higher temperatures than ranks further from the processor. Memory controller

policies can be designed to place the two copies of data in ranks that are

not both at high risk of failure, thus achieving higher overall reliability than

thermal-unaware policies – we leave such explorations for future work.

46 Chapter 3. Dvé

3.3.2.4 Error detection, decoding and recovery process in Dvé

After reading the codewords (data + ECC symbols) stored in the DRAM, the

data is checked for errors - commonly termed as error detection or syndrome

computation. In this phase, the decoder first recomputes the ECC symbols from

the symbols in the received codeword. The difference (in Galois arithmetic)

between the symbols in received codeword and the recomputed one is termed

as syndrome. The syndrome can be represented as a polynomial equation

of the received symbols. If the syndrome is zero, the data is error free. If

the syndrome is non-zero, then the received codeword is corrupted and the

magnitude and location of the error must be calculated. These additional steps

are organized as 3 steps.

First step, the decoder computes two polynomials: error-locator and error-

evaluator polynomials. The current ECC logic decoder circuits for this com-

putation are designed based on the Berlekamp–Massey algorithm. Alterna-

tively, other efficient algorithms like Peterson-Gorenstein–Zierler or Galois field

Fourier transforms can also be employed for decoding. Second step, to find

the erroneous locations, the roots of error locator polynomial are obtained by a

Chien search [30]. Third step, the magnitude of the error is calculated on the

error-evaluator polynomial using Forney’s algorithm [49]

If the local ECC is equipped with detect and correct code, the exact corrected

codeword can be obtained by the above steps and the correction can be per-

formed locally. In some cases, the decoding will fail when the number of errors

exceeds the capability of the coding scheme or if the local ECC is equipped

with a detect-only code [19]. This decoding failure leads to a local DUE. In

such cases, a recovery action is initiated using the replica. If the replica also

has a DUE failure in a different symbol, the original data can still be retrieved

from a combination of the original and replica symbols. For this, the decoding

process uses the erroneous symbols from the replica. After reconstruction, the

syndrome can again be calculated to ensure the data is error free.

3.3. Dvé 47

3.3.2.5 Reliability summary

Table 3.1 summarizes the DUE & SDC rates. A key reason why Dvé provides

significantly higher reliability over Chipkill and RAIM is because Dvé relies on

full replication, while other schemes are all based on ECC (which is a “k-out-of-

n” system). More precisely, our competitors rely on (n – k) out of n hardware

entities operating correctly – where hardware entities can be chips, channels

etc., and k = 1 or 2 and n is between 5 and 9, typically. In contrast, Dvé only

relies on the exact same hardware entity in the other independent replica not

failing. Therefore there are more ways for our competitors to fail compared to

us. Finally, it is worth noting that our analytical model does not account for other

memory subsystem failures like those in address/data bus, memory controllers

etc., due to absence of field data for these. Because Dvé is the only scheme

that can tolerate such failures, our analyses serve as lower bound for the actual

DUE, SDC rates. Compared to DDR5, which incurs 25% capacity overheads

for error detection and correction, Dvé can provide even higher reliability by

employing its novel organization i.e., strong detection-only code coupled with

replica for correction (12.5% + 50% overheads respectively). The overheads for

the detection-only code can be reduced with higher-efficiency optimized codes,

which come closer to reaching the Shannon limit [19]

3.3.3 System model

The sections hereinafter describe how Dvé achieves both reliability and per-

formance via replication. We first outline the baseline system model and then

describe how Dvé is built over it.

We assume a typical modern system consisting of multiple multi-core chips

connected via a cache-coherent, high-bandwidth, low-latency point-to-point

interconnect like Intel QPI, UPI or AMD Hyper-transport. Each multi-core chip

seated within a socket has a DRAM memory array co-located with it. Each

chip has multiple levels of SRAM caches including a last-level cache (LLC)

that is shared by the cores within that socket, but globally the LLC is private to

each socket as shown in Fig. 3.4(a). On an LLC miss, the request is routed

to the “home directory” adjoining the physical location of the home memory

48 Chapter 3. Dvé

Figure 3.4 Coherence operation in (a) NUMA (above) (b) Dvé (below)

controller. (The home directory for an address is determined based on a static

hash function of the address.) Thus, the memory access latency depends on

where the request originated and where the memory is located. Accessing

locations mapped to a remote socket experiences a higher latency, as they

require traversing one or more socket interconnect links compared to accessing

locations on the same socket. A hierarchical cache coherence protocol handles

permissions for each write request and enforces write serialization. Coherence

is enforced by looking up the logically centralized (but physically distributed)

global directory. We assume a full directory with the recently accessed entries

cached on-chip [134].

Dvé uses either a statically reserved portion of the entire memory space for

replication with a fixed function mapping or employs a flexible table based map-

ping populated by the OS as explained in Sec. 3.3.1. For either case, blocks

are always inserted into the caches using the original physical address and

only the directory controller is responsible for maintaining consistency between

the replicas. Note that there are no requests from caches for addresses in the

replica pages since these are unused/unallocated by the OS.

3.3. Dvé 49

Figure 3.5 Logical view of coherence in Dvé

3.3.4 Consistency and recovery semantics

We now precisely specify the consistency and recovery semantics of Dvé.

3.3.4.1 Consistency

Dvé extends the coherence protocol to: (a) keep the replica strongly consistent

with the data; (b) ensure that the replica is accessible during fault-free operation.

To maintain a strongly consistent replica, when a dirty cache block is replaced

from the LLC, the block is written back to the home node as well as the replica,

synchronously. (By “synchronously”, we mean that the request completes only

after both home node and replica are written to.) A strongly consistent replica

is a necessary but not sufficient condition to ensure that the replica can be

accessed during fault-free operation. The data in memory, and hence the

replica, could be stale when some cache in the system holds the location in

writable state. Therefore, we augment the coherence protocol with additional

metadata and logic (in the form of a replica directory) to ensure that the replica

is accessed only when it is not stale. With these extensions, Dvé ensures that

a read request can be serviced from nearest replica.

50 Chapter 3. Dvé

3.3.4.2 Recovery

Dvé’s strong consistency guarantee makes recovery straightforward. When a

memory read fails in one of the replicas, i.e., the local ECC check (if equipped

with DSD/TSD) or local ECC check+repair (if equipped with Chipkill) at the

memory controller fails after a DRAM read, the home/replica directory diverts

the request to the other memory controller for recovery. (If the other copy’s

read also fails, the data is lost (DUE) and a machine check exception is logged

and signaled.) If the copy is good, data is returned to the requester and the

system logs a Corrected Error (CE). The initial memory controller attempts to

fix its copy by updating (writing) it with the correct data and then re-reading the

DRAM. If the error was temporary, this read will succeed else the system is

placed in a degraded state with only one working copy.

3.3.5 Coherent replication

This section describes the details of the coherence protocol extensions for

realizing the above consistency and recovery semantics.

Logically speaking, Dvé introduces a new replica directory and so, each location

now has a home directory as well as a replica directory. In physical terms, Dvé

augments each directory controller with metadata (as shown in Fig. 3.4(b)) to

allow for the replica values held in that socket to be safely accessed. Normally

each physical directory maintains state for only locations mapped to that node.

In Dvé each directory also maintains state about replica locations mapped to

that node.

For each location, all LLCs in the system can be classified into two classes: (a)

home-LLCs: LLCs that send their request to the home directory – the home

directory being nearer to them; and (b) replica-LLCs: LLCs that send their

request to the replica directory – the replica directory being nearer. (Note

that LLCs can still cache any block in system memory, only that now requests

need not go to the home directory alone.) There is a hierarchical relationship

between home directory and replica directory as shown in Fig. 3.5. The replica-

LLCs view the replica directory as a cache of the home directory. Transactions

3.3. Dvé 51

originating from the replica-LLCs check the replica directory first before going

to the home directory. The home directory on the other hand views the replica

directory as one of its “sharers”; it forwards requests to the replica directory

which in turn consults its own sharer vector and forwards the requests to one

or more of the replica-LLCs.

We propose two protocol families – allow-based and deny-based – based on

how access permissions are acquired for replicas. In the former, the replica

directory pulls “allow permissions”: replica can be accessed only if a replica

directory entry for that location explicitly says the location can be accessed;

the absence of an entry means “no”. In the latter, the home directory pushes

“deny permissions” to the replica directory: replica can be accessed unless a

directory entry explicitly forbids its access; absence of an entry means “yes”.

Figure 3.6 Replica directory controller protocol: stable states and transitions

for the allow-based protocol

3.3.5.1 Allow-based Protocol

The replica directory maintains entries like in a conventional director – including

state, sharer vector, and owner. Without loss of generality we assume the MSI

states. “Invalid” means that the location is not cached in any of the replica-LLCs.

“Shared” means that the location is cached in readable state in one or more of

the replica-LLCs. “Modified” means that the location is cached in writable state

52 Chapter 3. Dvé

in one of the replica-LLCs.

Suppose that there is an LLC read miss in a socket that is sent to the replica

directory – the socket being closer to the replica directory. The request can

safely read from the replica if (and only if) that location is in shared state in the

replica directory. If it is in modified state, it has to be routed to the owner in one

of the replica-LLCs.

Importantly, if the entry for the location does not exist (i.e., location is in invalid

state), the replica cannot be safely accessed because it is possible that one of

the home-LLCs may currently hold the block in modified state. In such a case,

the request is forwarded to the home directory. The home directory responds to

the request with the value and adds the replica directory as one of its “sharers”.

Upon receiving the response, the replica directory goes into shared state and

sets the sharer vector to point to the LLC that initiated the request.

The complete state transition diagram of the replica controller is illustrated in

Fig. 3.6. The states and transitions resemble a conventional MSI directory

controller but with one crucial difference. When one of replica-LLCs evict a

dirty block in modified state, the replica directory not only writes back the block

to the replica memory but also the home memory. In a similar vein, the home

directory also writes back a dirty block to both the home memory and replica

memory.

In summary, the allow-based family of protocols lazily pull read permissions for

the replica upon access. This reactive approach works well on workloads with

significant private writes; it makes sense to avoid pushing permissions to the

replica directory via the inter-socket link when other threads are not likely to

read those lines.

3.3.5.2 Deny-based Protocol

In contrast to allow-based, in the deny-based family of protocols, the home

directory eagerly pushes deny permissions (i.e., knowledge about writable lo-

cations in their LLCs) to the replica directory. In doing so, the replica memory

can be accessed even if there is no directory entry corresponding to that loca-

3.3. Dvé 53

Figure 3.7 Replica directory controller protocol: stable states and transitions

for the deny-based protocol

tion. The proactive approach is suited to read-only (or mostly-read) workloads

since directories can read the nearest replica without the need for requesting

permissions.

Like in the allow-based protocol, the replica directory again maintains entries

like in a conventional protocol including: state, sharer vector, and owner. States

include the conventional MSI states, but additionally a new remote modified

(RM) state. A location in RM implies that one of the home LLCs have the block

in modified state; this implies that the replica is stale and hence cannot be

accessed directly. “Invalid”,“Modified” and “Shared” states mean the same as

in the allow-based protocol.

Suppose that there is an LLC miss that is sent to the replica directory. The

request can be safely read from the replica as long as the location is not in RM

state. Note that the replica can be read even if there is no entry in the replica

directory. Indeed, the absence of an entry implies that there are no remote

writers and hence means that the replica is not stale.

Finally, as in the allow-based protocol, an evicted dirty LLC block is written

to both the home memory and the replica memory. The state diagram of the

replica directory controller is illustrated in Fig. 3.7.

54 Chapter 3. Dvé

3.3.5.3 Handling Recovery

The recovery process of Dvé is simple and does not involve any stop-the-world

state update: when a local memory controller returns a read failure, the directory

simply forwards the request to the replica memory controller. In other words, the

coherence protocol is agnostic to the recovery action. Any concurrent request

from a cache or an I/O operation is serialized and coalesced at the directory

in the MSHR/intermediate state as in the baseline coherence protocol. This

invariant ensures correctness for all cases.

3.3.5.4 Complete protocol and Verification

Until now we have discussed only stable states and transitions, implicitly assum-

ing that state transitions happen atomically. In reality, each transition involves

a number of steps in modern systems. For this reason, transient states and

actions are necessary to enforce logical atomicity. We have fully fleshed out

complete protocol specifications including transient states and actions for both

protocol variants. Further, we have modeled the complete protocol in the Murϕ

model checker [40] and exhaustively verified the protocol for deadlock-freedom

and safety, i.e., they enforce the Single-Write-Multiple-Reader invariant [134].

The detailed state transition table for the replica controller and the Murϕ model

are available online7.

3.3.5.5 Protocol Optimizations.

We describe 3 protocol optimizations for improving performance.

(i) Speculative replica access. Consider an LLC miss that is sent to the replica

directory in the allow-based protocol; further let us assume that an entry for the

location is not present in the replica directory. This can either mean that the

location is in writable state in one of home-LLCs or the directory entry has been

evicted. The only way to find out for sure is to ask the home directory. But in the

meantime the local replica can be speculatively accessed to overlap memory

7https://github.com/adarshpatil/dve

3.4. Discussion 55

latency with home directory access. A similar optimization can be employed in

the deny-based protocol as well: in case of a replica directory miss, the local

replica can be speculatively accessed while waiting for the entry to be retrieved

from DRAM.

(ii) Coarse-grained replica directory. Until now we had assumed that the

replica directories operate at cache line granularity. We draw inspiration from

prior works [23],[131] to amortize overheads by using coarse-grain replica

directories. We use a contiguous, aligned block of memory to be covered by

one entry when possible i.e. a full memory block is entered into the replica

directory if no cacheline within it is currently in writable state.

(iii) Sampling based dynamic protocol. The performance of allow-based vs

disallow-based protocols is dependent on the workload. A sampling based

dynamic protocol can be used to achieve the best of both. We apply both

approaches to a region of memory for a few epochs and monitor their effective-

ness (similar in spirit to set dueling). Such an implementation requires a few

additional saturating counters in the profiling phase. The scheme that performs

better is then applied to the rest of the memory. When switching between the

protocols (based on a register being set in the CPU by compiler or OS), we

enter a drain phase to clear the replica directory and stop reading from the

replica memory. We then switch state machines, followed by a warmup phase

to bring the metadata entries au courant.

3.4 Discussion

We discuss how a flexible replica region is organized for on-demand replication.

3.4.1 OS support for memory replication

We now discuss the OS support needed to enable memory replication using the

flexible table based mapping (relaxing the restriction of fixed function mapping

assumed so far). There are 3 fundamental questions that need to be addressed

for this: (i) How does the OS carve and manage space required for replication?

56 Chapter 3. Dvé

(ii) How does the OS map replica page pairs? (iii) When does the OS enable or

disable replication?

(i) Carving and managing space required for replication: The OS already

uses heuristics to estimate unused memory to transparently cache accessed

files (called as disk buffering or file caching). Such approaches to estimate

maximum DRAM resident set size can be reused to opportunistically steal

system visible memory for replication. Further, balloon drivers [185] in the OS

can be used to create memory pressure, forcing it to select pages to swap

to disk, thereby carving memory space for replication. If memory pages are

required to be swapped out to disk, the OS can monitor page fault rate to ensure

that excessive swapping does not cause performance degradation beyond a

pre-defined threshold. Note that Dvé only requires pairs of pages in different

NUMA nodes and not a large contiguous address space, thus avoiding the need

to perform memory compaction. In the absolute worst-case, when additional

memory capacity is essential (either during burst periods or diurnal workloads),

server management infrastructure can notify the OS to disable Dvé replication.

The memory relinquished can be hot-plugged back to system visible capacity

(free memory pool). Dvé’s modular design of building over ECC enabled DIMMs

with Chipkill allows the system to provide the baseline reliability when Dvé is

disabled.

(ii) Mapping replica page pairs: As explained in Sec. 3.3.1, replica page pairs

are stored in an in-memory data structure called RMT. As the OS is already

aware of the memory layout on boot via EFI it can create replica pairs such that

they exist on memory adjoining different sockets. The RMT can be cached at

the directory controller for quick lookups and the controllers can lookup/walk the

RMT in hardware when needed (similar to a page table walker). Replication can

even be performed at coarse granularity, allowing the RMT to be organized as

a simple linear table or a 2-level radix-tree (similar to the page table) to perform

fast end-to-end translations. A mapping entry can remain in the RMT despite

the page being deallocated. This reduces the number of times the RMT cache

would need to be shot down or quiesced. Further, RMT changes are infrequent

since it only needs modifications in the rare event of a capacity crunch i.e., free

list runs out, and the OS reclaims replica pages for use as addressable memory.

Lastly, RMT entries can also be apriori populated by the OS heuristically in

3.4. Discussion 57

anticipation of replication requests for fast turn-around at memory allocation.

The RMT is an in-memory data structure and therefore it is conceivable that the

DRAM locations housing the RMT might encounter an error. To enable recovery

from such cases, the RMT can also be replicated. The RMT replicas are housed

at a fixed location which is computed with a fixed function mapping (as explained

in Sec. 3.3.1). If a RMT memory read encounters an error, the fixed function

mapping is used to compute the location of the RMT replica. Correspondingly,

an RMT write must also be replicated to both the fixed locations.

(iii) When should replication be enabled or disabled?: The onus is on

the workload placement and server management infrastructure (aka Control

Plane) to define critical workloads and notify the OS when such replication

costs are justified. The workload placement infrastructure manages the capac-

ity vs reliability memory mode decision as a soft setting on a fleet of commodity

high-capacity machines without having to procure specialized hardware for high

reliability memory. This allows greater flexibility as datacenters and HPC instal-

lations can provision single homogeneous iso-config hardware to enable easier

cost-efficient management while using Dvé to run mission critical workloads

where reliability is a non-negotiable first order concern.

Dvé’s replicated reliable memory can be flexibly deployed: (i) by the hypervisor

at per-VM granularity, (ii) per-container or per-process granularity for serverless

FaaS (Function-as-a-Service) deployments, (iii) for kernel allocations where

system stability is of utmost importance or in workloads like file servers which

use large amounts of OS memory to perform basic kernel operations, (iv) by

mirroring entire address space to protect aging machines errors. With this

knowledge, the OS adds a flag to the process control block (PCB) at creation

process time to always allocate replicated memory.

Alternatively, to allow an application to explicitly provide high reliability to certain

memory regions (say for a stateless application to allocate failure resilient data

segments), a variant of the malloc/calloc call can be provided to request the

OS to allocate a replicated physical memory.

Finally, note that Dvé guarantees higher reliability and improved performance

only for the replicated region.

58 Chapter 3. Dvé

Future Work: Dvé’s above design of the OS functionality for flexible memory

replication i.e., the carving space for replication, mapping replicas and the

mapping service, is based on the Linux virtual memory model. We leave the

actual implementation of the design to future work.

3.4.2 Performance caveats of Dvé

Dvé aims to maximize the performance obtained by using the Coherent Repli-

cation scheme. Recall that if there are any issues with one of the replicas, for

e.g. due to hard errors or thermal throttling or preventing a row-hammer ac-

cess pattern, the system is placed in a degraded state where there is only one

working copy. This negates the performance benefits for that memory location.

Note that by marking the locations which are in a degraded state and funneling

their requests to the single functional location, Dvé will provide performance

comparable to baseline NUMA. The performance benefits may also be nullified

or marginally adversely affected with Dvé if all compute and memory accessed

is localized to a single NUMA node. This is because all memory writes have to

be replicated to both NUMA nodes (not in critical path).

3.5 Evaluating Dvé

3.5.1 Evaluation goals

The goals of our evaluation are as follows. First, to evaluate the performance

benefits of the coherent replication protocols over baseline NUMA architecture.

Second, to explain the performance benefits using the key metric of coherence

traffic between sockets. Third, evaluate the optimizations presented in Sec.

3.3.5.5. Fourth, evaluate the robustness of performance gains of Dvé schemes

to varied inter-socket latencies. Finally, study the impact of replication on DRAM

and system energy.

3.5. Evaluating Dvé 59

Table 3.2 Configuration of the Dvé simulated system

Processors 16-core, 2 socket, (8-core/socket), 3.0 GHz

L1 I/D Cache 64KB, 8-way, private per core, 1 cycle, writeback

L2 Cache (LLC) 8MB, 16-way, shared per socket, 20 cycles, writeback

Local Directory embedded in L2, fine-grain (cores) sharing vector

Global Directory 20-cycle, coarse-grain (sockets) sharing vector

2 × 8GB DDR4-2400 Mhz, 8 devices, 8-bit interface

Baseline Memory tCL-tRCD-tRP-tRAS=14.16ns-14.16ns-14.16ns-32ns

1KB row buffer, 16 banks/rank, 1 channel/socket

Replicated Memory 4 × 8GB DDR4-2400 Mhz, 2 channel/socket

Intra-socket interconnect 2×4 Mesh, SSSP routing, 1 cycle per hop

Inter-socket interconnect point-to-point, 50ns

3.5.2 Evaluation methodology

We now set out the parameters and configuration of the multi-socket NUMA

architecture used in our experimental evaluation of the coherent replication

protocols proposed.

3.5.2.1 System Configuration

We model a two-socket, Intel Skylake-like processor configuration with mesh

topology within the socket and a point-to-point QPI/UPI-like interconnect be-

tween the sockets. All links are ordered and have a fixed latency. A table-based

static routing is enforced with a shortest path route with minimum number of

link traversals. Each multi-core chip has per-core private caches, a shared

LLC, a directory and a memory controller. The system is kept coherent using

a hierarchical MOESI/MOSI protocol (full config details in Table 3.2). Memory

is allocated using an interleave policy whereby adjacent pages are interleaved

across memory controllers in a round-robin fashion. We use an inter-socket

latency of 50ns per hop. This is in-line with the difference between local and

remote memory on a dual-socket Intel SandyBridge machine [69]. We also

study the performance sensitivity to inter-socket latency.

60 Chapter 3. Dvé

3.5.2.2 Memory Configuration

Since our primary aim is to demonstrate the benefits of coherent replication

in conditions where workloads memory needs are already satisfied, both the

baseline and Dvé have the same system visible memory capacity. We assume

the entire system memory is replicated using a fixed function mapping as ex-

plained in Sec 3.3.1. In our evaluation, to accommodate the additional capacity

required to store the replica, we add DIMMs on another channel on both the

NUMA nodes as shown in Fig. 3.3. While several other lower performance con-

figurations can be used to increase the capacity required to house the replica

(like using a dual rank DIMM or higher capacity chips in a DIMM), this does not

affect the overall reliability of the system as the replicas are anyway stored on

different NUMA nodes.

3.5.2.3 Simulator setup

Simulating large core count systems with high-capacity DRAMs and large appli-

cation working set sizes is challenging with existing publicly available tools. To

circumvent this, we generate traces of benchmarks using the Prism frame-

work [140] which uses Valgrind to generates traces of compute, memory,

multi-threading APIs like create/join, mutexes, barriers, conditional wait/sig-

naling/broadcasting, spin locks/unlocks and producer-consumer thread com-

munication events. The tool captures synchronization and dependency-aware,

architecture-agnostic multi-threaded traces.

We replay traces in a modified gem5 simulator [157]. Integer/floating point

computations and thread API events have fixed latency of 1 cycle and 100

cycles respectively while all memory operations are simulated in detail. The

replay mechanism respects synchronizations, barriers and mutexes. We skip

the serial sections and/or initialization parts of the programs and instrument

only the region of interest (ROI) in the benchmarks. Since the simulator is

driven by program execution traces, only the entire user-space level data is

replicated. The kernel-space/OS data and events are not collected and thus

not captured in the simulated replication scheme.

3.5. Evaluating Dvé 61

Table 3.3 Multi-threaded workloads evaluated

Suite Benchmark

HPC (assorted) comd[9], xsbench[176], graph500[63], rsbench[175]

PARSEC [18] canneal, freqmine, streamcluster

SPLASH-2x [179] barnes, fft, ocean_cp

Rodinia [26] backprop, bfs, nw

NAS PB [138] mg, bt, sp, lu

Parboil [90] stencil, histo

SPEC 2017 [173] lbm

3.5.2.4 Workloads

We use OpenMP and Pthreads based multi-threaded workloads from 7 bench-

mark suites. Memory intensive applications were chosen from these suites

(Table 3.3). We use the largest input dataset available for these benchmarks.

Traces of the ROI are used to warm-up the caches and structures for the first

1 billion operations i.e. computation, memory or communication events (which

correspond to between 0.5-1.15 billion instructions) and then simulated in detail

for 20 billion operations (8-19.3 billion instructions). We order the workloads in

descending order of L2 MPKI and report the geometric mean of speedup as an

aggregate statistic for the top-10 (high MPKI), top-15 and all 20 benchmarks.

3.5.2.5 Protocol Configuration

We use a fully associative 2K entry structure for the replica directory. We

assume same access latency for the replica directory as the home directory

for both protocols. We employ speculative replica memory access optimization

as part of the default configuration. While this does trade-off bandwidth for

squashed replies, we find that in our simulations the latency benefits outweigh

the bandwidth loss. For the sampling based dynamic scheme optimization, we

run a profile phase for the workload for 100 million instructions every 1 billion

instructions for each scheme. We then apply the scheme that performs better

for the rest of the phase.

62 Chapter 3. Dvé

3.5.3 Evaluation results

backprop
graph500 fft

stencil
xsbench

ocean cp nw
rsbench sp

comd

gm
ean

-to
p10 bt

barnes lu histo lbm

gm
ean

-to
p15 bfs

canneal mg

stre
amcluster

freqmine

gm
ean

-all

1

1.2

1.4

1.6

2.17

S
p

ee
d

u
p

NUMA Allow protocol Deny protocol Dynamic protocol Intel Mirroring++

Figure 3.8 Performance comparison of all configurations (normalized to NUMA)

3.5.3.1 Performance Benefits of Coherent Replication

Fig. 3.8 shows the performance of allow, deny and dynamic protocol normalized

to a baseline NUMA system without memory replication. The deny protocol

achieves an average speedup of 28%, 18% and 15% for the top-10, top-15

and all benchmarks respectively, while the allow protocol achieves an average

speedup of 17%, 14% and 12% respectively over the baseline. Although deny

protocol performs better on average, only 10 benchmarks (backprop, graph,

fft, stencil, xsbench, ocean_cp, nw, rsbench, bfs, streamcluster) show better

performance with a deny protocol while the other workloads perform better

with the allow protocol. The dynamic protocol is always able to detect the

better of 2 protocols. Therefore the dynamic protocol achieves the best average

speedup of 29%, 22% and 18% over the baseline. A key point to note is that all

benchmarks for all schemes, perform equal to or better than the baseline which

shows that the overheads of coherent replication does not cause any adverse

performance penalties.

To compare against the best possible performance that can be gained by read-

ing data from 2 mirrored channels, we implement an improved (hypothetical)

version of Intel’s memory mirroring scheme by actively load balancing reads

between them. (Recall the default Intel memory mirroring scheme does not

read the secondary copy, unless the primary fails.) Dvé’s schemes provide a

geomean speedup of 9% and 13% better than the Intel-mirroring++ scheme for

allow and deny respectively, as they are able to avoid the inter-socket latency by

providing node local reads while the Intel-mirroring++ scheme can only provide

3.5. Evaluating Dvé 63

higher read memory bandwidth by allowing reads from both channels.

ba
ck

pr
op

gr
ap

h5
00 fft

st
en

ci
l

xs
be

nc
h

oc
ea

n
cp nw

rs
be

nc
h sp

co
m

d bt

ba
rn

es lu
hi

st
o

lb
m bf

s

ca
nn

ea
l

m
g

st
re

am
cl
us

te
r

fre
qm

in
e0

20

40

60

80

100

%
o
f

R
eq

u
es

ts

private-read read-only read/write private-read/write

Figure 3.9 Sharing pattern in benchmarks

3.5.3.2 Performance Analysis - Workload Sharing Characteristics

To assess why a scheme performs better for a workload, we look at the inter-

socket sharing characteristics of workloads in the baseline NUMA system. By

analyzing this, we can understand the opportunity for performance gains from

each scheme. We classify the requests at the home directory as one of the

following – private-read for a GETS request to a line in I state, read-only for

a GETS request to a line in S state, read/write for a GETS request to a line

in M or O state or a GETX request to a line in S state, private-read/write for

GETX request to a line in I state. Fig 3.9 shows the distribution of the above

mentioned classes for each workload. Workloads that exhibit considerable

private read/write behavior (greater than 46%) show higher benefits with an

allow protocol. This is expected, since for such workloads on a GETX request

where there is no sharing, the allow protocol is able to avoid aggressively

pushing invalidates (by virtue of being a lazy, pull-based scheme) while the

deny protocol is required to update the replica directory.

64 Chapter 3. Dvé

backprop

graph500 fft
sten

cil
xsbench

ocea
n cp nw

rsb
ench sp

comd

avg
-to

p10 bt
barnes lu histo lbm

avg
-to

p15 bfs
canneal mg

stre
amcluster

freq
mine

avg
-all

20

40

60

80

100

In
te

r-
so

ck
et

tr
affi

c

NUMA Allow protocol Deny protocol

Figure 3.10 Inter-socket traffic (normalized to NUMA)

3.5.3.3 Performance Analysis - Inter-socket traffic

Note that both allow and deny protocols incur additional inter-socket writes to

replicate data. However, the protocols reduce inter-socket reads by reading

from local replica memory. As observed in the workload sharing characteristics

analysis above, the workloads show significant private read/write behavior

and thereby benefit from Dvé’s protocols. The allow-based protocol avoids

re-requesting inter-socket read permissions on a subsequent request and the

deny-based protocol avoids inter-socket communication completely when a

read from the local replica memory is possible. Overall, the protocols reduce

the inter-socket traffic, compared to the baseline NUMA.

Fig 3.10 quantifies the reduction in inter-socket traffic when using Dvé proto-

cols compared to baseline NUMA. We see that reduction in inter-socket traffic

correlates with the performance benefits, i.e., the protocol which shows higher

reduction in inter-socket traffic performs better. Backprop and graph500 no-

tably experience a 86% and 84% reduction in inter-socket traffic as they see

mostly private-read and read-only requests which can be serviced by the replica.

Overall for the 20 benchmarks, allow and deny protocols reduce inter-socket

communication traffic by an average of 38% and 35% respectively over the

baseline NUMA architecture.

3.5.3.4 Optimizing the schemes

To gauge the ceiling of performance we can expect from an allow-based pro-

tocol, we measure the performance achievable with an oracular allow-based

3.5. Evaluating Dvé 65

backprop
graph500 fft

stencil
xsbench

ocean cp nw
rsbench sp

comd

gm
ean

-top
10 bt

barnes lu histo lbm

gm
ean

-top
15 bfs

canneal mg

stre
amcluster

freqmine

gm
ean

-all

1

1.2

1.4

1.6

1.8
2.24

S
p

ee
d
u
p

default 4K entries 2KB granularity oracle

Figure 3.11 Performance of allow-based protocol optimizations

scheme. Intuitively, the size of replica directory structure is proportional to the

efficiency of the scheme and thus, for an oracular scheme we allow the replica

directory entries to be infinite and exhaustive. Further, it does not incur any

latency overheads to add an entry (in the spirit of oracle knowledge) while inval-

idation/removal of entries does incur latency (since this can never be avoided).

With such a configuration, we see that the performance of oracular scheme is

18.3% and 10.8% better than the default allow protocol for the top10 and all

benchmarks respectively (Fig. 3.11, fourth bar)

In reality to achieve near oracular performance, we double the number of replica

directory entries to a fully associative 4K entry structure. We see that the

larger structure provides an average hit rate improvement of 32% and improves

performance by 2.1% and 1.7% over the default allow protocol for top10 and all

benchmarks respectively (Fig. 3.11, second bar).

Another optimization we can use is to use coarse-grain tracking at the replica

directory to increase the reach. When such an optimization is employed bench-

marks such as backprop, graph500, fft, rsbench show gains while stencil,

ocean_cp, comd, bfs suffer compared to the default cache-line level track-

ing (Fig. 3.11, third bar). Further nw, sp, barnes and canneal perform worse

than baseline NUMA. This is due to the additional overhead to invalidate entries

from other sockets when an exclusive request is issued for a larger granularity.

Overall, coarse granularity tracking performs 0.7% better for top10 benchmarks

but performs worse by 1.7% over all benchmarks compared to the default allow

protocol. Thus such a technique is not well suited to improve performance.

We note that the performance of the best variant of the allow protocol for each

benchmark is within 12% and 7% of the oracular performance for top10 and all

66 Chapter 3. Dvé

benchmarks (16% better than the baseline NUMA overall).

30405060

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Inter-connect Latency in ns

S
p
ee
d
u
p

top10 top10

top15 top15

all all

allow deny

Figure 3.12 Sensitivity to interconnect latency

3.5.3.5 Sensitivity to inter-socket latency

A number of software-based techniques – including Carrefour [37], Shoal [91],

AutoNUMA – have been proposed to mitigate NUMA effects; the net effect of

each of these techniques is to reduce the average inter-socket latency. There-

fore, we study the effect of inter-socket interconnect latencies on the perfor-

mance of Dvé. As seen in Fig. 3.12, even with fairly low 30ns interconnect

latency (each way), the deny protocol outperforms the baseline by 19%, 12%

and 10% for top-10, top-15 and all benchmarks respectively. On the other

end, with increased inter-socket latencies of 60ns (as in emerging scalable

long range interconnects like CCIX[24], OpenCAPI[143] and GenZ[55]), Dvé’s

benefits increase as expected.

backprop
graph500 fft

stencil
xsbench

ocean cp nw
rsbench sp

comd

gm
ean

-top
10 bt

barnes lu histo lbm

gm
ean

-top
15 bfs

canneal mg

stre
amcluster

freqmine

gm
ean

-all
0

0.5

1

1.5

S
p

ee
d
u
p

NUMA Allow protocol Deny protocol

Figure 3.13 Energy-Delay Product of DRAM subsystem

3.6. Related work 67

3.5.3.6 Energy

To understand the energy overheads of maintaining a replica for each location,

we measure the energy-delay product (EDP) of the DRAM subsystem. Each

command to the DRAM consumes a specified amount of energy to execute, as

specified in the Micron datasheet [123]. We use these values in the simulator to

compute the total energy consumed by the DRAM subsystem while executing

the workload. Fig. 3.13 shows the EDP of allow and deny protocols normalized

to the baseline non-replicated NUMA system without idle memory. We observe

that, memory-EDP for memory intensive benchmarks (backprop, graph500, fft)

reduces even with the overheads of double memory capacity but the geomean

over all benchmarks increases by 43% and 37% for allow and deny protocols

respectively. (Note that we expect the memory-EDP of Dvé to be even lower

when using idle memory as it still uses energy for refresh, even in a low power

(self-refresh) state.) Moreover, typically memory consumes only a fraction of

the overall system power: about 18% of the total system power in a 2-socket

NUMA system [14]. Using this to calculate the system-EDP, we find that the

system-EDP geomean over all benchmarks turns out to be lower by 6% and

12% for allow and deny respectively, due to shorter execution times.

3.5.4 Evaluation summary

Our experimental results indicate that Dvé provides significant performance

improvement for memory intensive applications with various sharing character-

istics. Dvé also reduces inter-socket traffic and DRAM energy usage and its

performance gains are robust across a wide range of interconnect latencies.

3.6 Related work

State-of-the-art ECC proposals: A large body of recent work have proposed

several variants of ECC schemes to deal with errors in the DRAM devices [25],

[57], [88], [94], [95], [136], [177], [191]. Specifically, multi-tier ECC approaches

proposed in [87], [177], [191] separate error check and error correction code.

68 Chapter 3. Dvé

AIECC [95] sheds light on the need for channel error protection (clock, control,

command and address buses) and a holistic ECC based scheme to achieve it.

All these proposals rely on correction bits stored in the same DIMM/rank/chan-

nel and thus cannot correct memory controller or channel failures as in this

work. Dvé can be flexibly paired with any proposed ECC scheme for error

detection, and use the replica to recover from an error. These works also suffer

performance degradation for providing additional protection while Dvé provides

performance benefits.

Non-ECC based DRAM RAS schemes: To detect transmission errors on

channels, DDR4 memory controllers use CRCs and retry transactions if errors

are detected [123]. If errors persist, lanes are quiesced, reset and recalibrated

but cannot handle hard channel failures. Aside from ECC based systems, Intel

[68, 74] and IBM processors [72] allow memory to be mirrored across two

channels within a memory controller or across two DIMMs within a channel.

While these mechanisms can tolerate channel failures, they are still subject to

faults in the single memory controller subsystem.

MemGuard [28] uses incremental log hashes for error detection and a OS

created checkpoint for error recovery. However the recovery is not instant and

can lead to loss of updates. Selective word level replication [137] proposes

selective replication of words to mitigating large granularity failures in DRAM

chips with manufacturing defects. As before, all these mechanisms cause

performance degradation for providing at most channel error protection.

Stacked DRAM RAS schemes: Stacked DRAMs are prone to failures in dies

and TSVs due to their organization, which resemble chip and channel failures.

Adopting conventional ECC schemes causes performance pathologies due

to the layout of data. To protect against such errors without causing perfor-

mance/power overheads a body of work [27, 84, 89, 118, 135] calls for adding

additional tier-2 code that is an XOR of the data blocks. This XOR block is

then stored in the same stacked DRAM in a manner that allows regeneration of

original block in case of a TSV/die failure. Although the XOR block is stored in

an independent channel it cannot be accessed independently without the data

block (as it not a full replica). Even if a replica were used instead of XOR block,

these works would resemble at best an Intel mirroring approach [74].

3.6. Related work 69

Mitigating NUMA overheads: Carrefour [37] proposes OS-driven selective

replication of memory read-only or read-mostly pages to alleviate NUMA over-

heads. Shoal [91] proposed program analysis to automatically replicate memory

regions across NUMA nodes for mitigating the performance penalty of remote

access.

Architectural solutions for mitigating NUMA has had a long history, most notably

in the cache-only-memory architecture (COMA) and tertiary caching line of

research [15, 159, 183, 195]. More recently, C3D [69] and Candy [31] use

a per-socket stacked DRAM cache to reduce NUMA interconnect latencies.

All of these works leverage hardware support for caching remote data and

keeping them consistent. None of the aforementioned works aim to provide

fault-tolerance. While Dvé aims to use the replica for improving performance,

it’s primary goal is to provide improved DRAM fault-tolerance.

NVM RAS mechanisms NVMs suffer from high number of hard errors due to

cell wear out and stuck-at faults. ECP [161], FREE-p [190], PAYG [150] and

Chipkill-correct for NVRAM [193] propose using pointers or error correction

entries to remap failed bits in a line or use variants of ECC. All these schemes

still target cell failures and cannot deal with larger granularity failures due to

errors in shared components.

Dynamically Replicated Memory (DRM) [81] uses a read-after-write scheme

to detect errors. When an error is detected, the scheme makes a copy to

a compatible page with dissimilar faults. Both copies need to be accessed

to service a request. We find that NVM memory RAS mechanisms are also

insufficient to handle the scope of errors targeted in our work.

Exploiting underutilized memory FMR [145] proposes replicating data into

idle memory – on different ranks in the same memory controller and uses it to

hide DRAM maintenance latency overheads like refresh, precharge delay etc.

FMR performs lock step write into the rank replicas within the same memory

controller. This is very similar to the Intel-mirroring++ scheme implemented in

our evaluation.

Workload co-location exploiting workload heterogeneity and variability has been

proposed to improve utilization in the cloud[113]. However, this is having lim-

70 Chapter 3. Dvé

ited effectiveness given the dynamic bursty nature coupled with stringent tail

latency, throughput guarantee requirements and increased security concerns.

Memory disaggregation has also been proposed to allow workloads that require

high capacity memory to take advantage of idle remote memory to improve

performance [82], which is orthogonal to our approach.

3.7 Summary

In this chapter, we have presented Dvé, a hardware memory replication mecha-

nism for achieving both reliability and performance. We have demonstrated that

this unique design point offers considerably higher memory reliability and can

be flexibly deployed on-demand. Furthermore, our experimental results indicate

that in contrast to existing memory reliability techniques that are detrimental to

performance, Dvé provides a non-trivial improvement in performance.

4
Āpta: Fault-tolerant object-granular CXL
disaggregated memory for accelerating
FaaS

In the previous chapter, coherent replication was employed to improve reliabil-

ity and performance of memory within a datacenter server. However, as we

observed in Chapter 1, in today’s datacenters, main memory capacity is also

located outside a server i.e., disaggregated using CXL. This disaggregated

memory can also be shared between multiple servers and kept coherent with

the CXL.mem protocol.

In this chapter, we present Āpta- a technique to improve the reliability of CXL

disaggregated memory. Āpta specializes this disaggregated memory to improve

the performance of function-as-a-service (FaaS) applications.

4.1 Overview

The FaaS model is quickly becoming the defacto standard for cloud developers.

In FaaS, applications are composed as workflows of stateless functions, and

the cloud provider then orchestrates and schedules the functions dynamically

on a fleet of compute servers.

The stateless nature of functions is good for availability, scalability, and elasticity,

but it inevitably forces state to be maintained externally. Indeed, data stores

such as Amazon S3 [21] are used to maintain state and pass input/output data

71

72 Chapter 4. Āpta

between the stateless functions in the workflow. These data stores are the

backbone of FaaS platforms.

Splitting state and compute, however, has an intrinsic data movement cost.

Our analysis of FaaS functions from the FunctionBench [96] and SeBS [35]

benchmark suites shows that on average 96% of the execution time per FaaS

function is spent in retrieving data from the S3 object store. Replacing the S3

object store with a RDMA-based in-memory object store improves the situation

somewhat – with 51% of execution time spent in retrieving data – but the

problem persists. Communication overheads still limits performance.

Figure 4.1 Āpta system schematic (new controllers are shown in red). The

figure shows a CXL disaggregated memory system, where compute servers are

connected to and cache data from a logically centralized (physically distributed

and highly-available) memory server via a hardware load/store interface. Āpta

augments the memory server with new controllers to support object-granular

accesses and keeps the caches consistent with a fault-tolerant coherence

protocol. Sec 4.3.4.1 defines the micro-architecture of Āpta’s memory server

controllers: object serving controller (OSC), object tracker controller (OTC),

object persistence controller (OPC), object invalidation controller (OIC).

Insight: FaaS objects on CXL disaggregated memory. We observe that

upcoming CXL-based hardware disaggregated memory [33, 143] is a promis-

ing avenue for maintaining FaaS objects. CXL pools memory resources onto

a logically centralized, physically distributed, highly-available memory server,

4.1. Overview 73

and allows compute servers to perform load/store remote memory accesses

in hardware over the network. The memory server, as shown in Fig. 4.1, is

equipped with specialized hardware controllers for performing frequent data

plane operations and minimalist low-power processors to handle rarer control

plane operations [65, 105]. Since CXL allows for loads and stores to be handled

in hardware like in a traditional NUMA machine [107, 108, 149], CXL-based dis-

aggregated memory allows for significantly lower latency and higher bandwidth

compared to high-performance RDMA-based remote memory.

Furthermore, the recently announced CXL 3.0 specification [34] allows the

compute server caches to transparently cache data from a shared region in

disaggregated memory, which matches well with the access patterns of a FaaS

object store. Because FaaS functions typically share objects between them,

object accesses exhibit significant locality and are amenable to caching. There-

fore, such object caching and the use of a locality-aware scheduling policy

(schedule functions where objects it uses are cached) has the potential for

significantly reducing data movement.

Our analysis shows that a FaaS object store over a CXL-based disaggregated

memory system with support for object-granular accesses, coupled with a

locality-aware scheduling policy can improve performance of the aforemen-

tioned FaaS functions by a significant 2.3× over the state-of-the-art RDMA-

based object store. This is the performance opportunity Āpta targets.

CXL provides consistency but forgoes availability. To preserve flexibility and

maximize throughput, a cloud system dynamically schedules a function on any

available compute server. This dynamicity combined with compute-side caching

results in FaaS objects being replicated, and it is imperative that the replicas be

kept consistent. Because compute servers can fail or be unresponsive in the

datacenter, it is important that the consistency protocol remains available in the

presence of such failures: i.e., the protocol should not block indefinitely if any

of the servers fail. Alas the CXL 3.0 protocol [154] (which is a conventional pro-

tocol that enforces the Single-Writer-Multiple-Reader (SWMR) invariant [134]),

while enforcing strong consistency, fundamentally blocks in the presence of

server failures: if a server sharing an object fails, a write to that sharer from

any other server could indefinitely block waiting for an acknowledgment from

74 Chapter 4. Āpta

the failed sharer. Thus, this naive application of a traditional multi-processor

coherence protocol (non fault-tolerant) for distributed disaggregated memory

leaves CXL systems vulnerable to system crashes.

Severity of the problem: Building system resiliency is an important problem

as servers frequently fail or become unavailable in a datacenter environment.

Google has observed that up to 25% of service-level disruptions are caused by

machine-level failures [14]. A study of errors in even the highest reliability petas-

cale supercomputers has shown that network link and server faults causing job

failures occur with a mean time between failures (MTBF) of 160 hours [39, 85].

Consequently, fault tolerance is a key tenet of FaaS platforms. This is precisely

why FaaS applications have already embraced failures via idempotent functions

[5, 61]: if a function fails while executing (e.g., due to a compute server failure)

the FaaS function can simply recover by re-executing. Therefore, it is imperative

that the underlying CXL-based object store operates correctly in the presence

of such server failures.

Consistency & availability via fault-tolerant coherence. We transform a

strongly consistent SWMR-enforcing coherence protocol into a highly-available

protocol in the presence of compute server failures. The idea consists of two

simple steps: lazy invalidation and coherence-aware scheduling. In the first

step we move the invalidations out of the critical path of the write so a writer

is not blocked indefinitely when a server caching the sharer fails. But because

invalidations are moved off the critical path of the write, there is a window of

inconsistency where caches may hold stale values. In the second step we make

a simple change to the FaaS scheduler [101] allowing it to schedule functions

only on servers where there are no pending invalidations – thereby enforcing

strong consistency as well as availability. Āpta’s method for transforming the

non fault-tolerant coherence protocol into a highly-available one can easily be

applied to upcoming versions of CXL.

Contributions.

1. We make the case for a CXL-based object store for FaaS with object-

granular reads/writes (Sec 4.2). Our analysis using stand-alone FaaS

functions indicates that such a design can provide a 69× performance

improvement over the Amazon S3-based FaaS system, and a 2.3× im-

4.1. Overview 75

Table 4.1 Taxonomy of state-of-the-art proposals

Caching support? Hardware Compute server Performance

System (granularity, write-policy, inter-server sharing, support? fault-tolerance for object

coherence mechanism, sharer invalidation) stores

S3 [21] No No High Low

Pond[108], Kona[22] Yes (cacheline, write-back, No, N/A N/A) Yes Low Low

ThymesisFlow [149]

LegoOS [163] Yes (page, write-back, No, N/A, N/A) Yes Low Medium

Clio-KV [65] Yes (object, write-through, Yes, No, N/A) Yes Low Medium

MIND [105] Yes (page, write-back, Yes, MSI, sync) Yes Low Medium

OFC [133] Yes (object, write-back, Yes, version-based - No Low Medium

all reads require remote version match, No)

Faa$t [155] Yes (object, write-through, Yes, version-based - No High Medium

all reads require remote version match, No)

CXL 3.0 spec [34] Yes (cacheline, write-back, Yes, MESI, sync) Yes Low Medium

Āpta Yes (object, write-through, Yes, SI, async) Yes High High

provement over a RDMA-based system. We observe, however, that such

a system must remain fault-tolerant, which existing CXL protocol specifi-

cation falls short of.

2. We introduce Āpta (Fig. 4.1) – a CXL-based object store that allows com-

pute server-side caching of objects without compromising consistency

or availability (Sec. 4.3). Āpta is tailored for object-granular accesses

and defines a fault-tolerant inter-server cache-coherence protocol that,

together with the FaaS scheduler, enforces strong consistency and pro-

vides high-availability in the presence of server failures. We have verified

safety and liveness of the protocol in a model checker.

3. We evaluate the performance of Āpta (Sec. 4.4) using 6 full FaaS applica-

tions (total of 26 functions) and show that it provides 21–90% execution

time speedup over a state-of-the-art fault-tolerant RDMA-based object

store and 15–42% speedup over a reliable CXL-based object store with-

out caching.

4. We observe that amongst all state-of-the-art high-performance remote

memories and object stores that support caching (Table 4.1), Āpta has

the highest performance, and the highest availability in the presence of

compute server failures.

76 Chapter 4. Āpta

4.2 Motivation

In this section, we first demonstrate the compelling performance reason to

migrate FaaS object store to a disaggregated memory system (abbreviated as

DM). Next, we illustrate why DM, while providing improved performance, falls

short of providing the level of fault-tolerance required for the FaaS paradigm.

Finally, we highlight inefficiencies when existing cache line granularity DM is

used to design an object store.

4.2.1 The performance potential of a DM-based object store

We compare the performance of FaaS functions from FunctionBench [96] and

SeBS [35] benchmark suites1 using three different object stores: Amazon

S3, RDMA-based, and DM-based object stores. The functions execute two

basic operations on the object store: obj ← get(objID) at the beginning and

put(objID, obj) at the end, where objID is an identifier for an object obj.

The computations in the middle of these functions are often unoptimized which

hides the true bottlenecks in the system. We envision that high-performance

frameworks such as Google TensorFlow [79] and Facebook PyTorch [78] will

be adopted for FaaS in the future. We therefore ran the functions with Intel

OneAPI [76] which applies vectorization, parallelization, cache blocking and

other architecture specific optimizations. The optimized computation was run

on a 16-core Intel Xeon Skylake machine. This measured computation time

was kept constant across all runs while the get and put time varied based on

the object store employed.

FaaS functions experience high communication overheads with Amazon

S3: When using the S3 object store, a get operation downloads the object from

a remote S3 server into the compute server memory using http network protocol;

post computation the put operation uploads an object from the compute server

into a remote S3 server using http network protocol. We take the median of

100 executions accounting for cold function and tail latency effects [51, 182].

1We exclude micro benchmarks and network benchmarks that are non-deterministic and
sensitive to external system delays.

4.2. Motivation 77

gra
ph

mst

json
des

eria
liza

tion

gra
ph

pag
era

nk

image
resi

ze
matm

ul

com
pre

ssio
n

image
reco

gniz
tion

logi
stic

reg
ress

ion
ave

rag
e0

20

40

60

80

100

%
o
f
ex
ec
u
ti
on

ti
m
e

compute
get
put

Figure 4.2 Compute-to-communication ratio in function execution using -

(a) Amazon S3 (first bar) (b) in-memory RDMA store (second, striped bar)

We observe that on an average 96% of execution time is spent in communicating

data from/to the S3 object store (Fig. 4.2, all unstriped bars). This shows that

the execution of FaaS functions in the cloud today is severely limited by the

latency of accessing data from object stores. While S3 is based on disk based

storage servers, it employs several optimizations like replication and sharding

[21] to provide the best performance among today’s production object stores.

In-memory object store does not alleviate the communication overheads:

High-performance RDMA-based in-memory object stores completely bypass

the remote CPU to read (write) objects directly from (into) the memory of the

remote object server [36, 64, 129]. For this, the get and put operations were

modified to use one-sided RDMA verbs which runs over an Infiniband network

(single-port Mellanox ConnectX-3 NIC on PCIe-gen3 x16) [43, 120]. Even with

such modern RDMA-based data store, on average 51% of execution time is

still spent in communicating objects (Fig. 4.2, all striped bars).

Overcoming RDMA’s Achilles heel: The RDMA-based approach has sev-

eral fundamental characteristics that limit performance – the use of software

libraries like libibverbs and libmlx4, the need to perform two DMA data copy

operations (at source and at destination, copying data to/from RNICs Memory

Region) and managing the memory regions with software-initiated per-server

static connection queue pairs. Several works have analyzed these and other

78 Chapter 4. Āpta

drawbacks of RDMA [62, 65, 107]. DirectCXL [62] quantifies that even with the

same underlying physical interconnect, RDMA’s irreducible overheads makes

get/put operations 2.2× slower than CXL-based DM. DM is the new approach

that chip manufacturers and cloud providers are investing in. DM overcomes

the drawbacks of RDMA by allowing all data plane operations to be handled in

hardware, thereby providing lower latency and higher bandwidth.

gra
ph

mst

json
des

eria
liza

tion

gra
ph

pag
era

nk

image
resi

ze
matm

ul

com
pre

ssio
n

image
reco

gniz
tion

logi
stic

reg
ress

ion
geo

mean

20

40

60

80

100

120
412× 834× 139× 164×

S
p
ee
d
u
p
(x

ti
m
es

ov
er

S
3) RDMA

DM

DM+caching

Figure 4.3 Comparison of FaaS functions performance with various object

stores (Baseline Amazon S3)

DM reduces communication overheads: The object is retrieved from a load-

/store semantic DM system. All standards for building such a DM system

(GenZ[55], OpenCAPI[143]) have coalesced under the CXL umbrella due to

their synergistic goals. Currently however, there exist only early prototypes:

(i) OpenCAPI-based DM[149], providing RTT latencies of 950ns and a band-

width of 12.5GiB/s; (ii) CXL-based DM[62], providing a lower RTT latency

of 500ns and a higher bandwidth. We pessimistically model the worst-case

latency and bandwidth of OpenCAPI for our DM system. Our modeled DM

system lowers latency by 3× and improves bandwidth by 10× over the RDMA

system [107, 149].

With DM, the fraction of execution time spent for communication in FaaS func-

tions reduces to 13% of the total time, on average. This translates to a large

reduction in execution times of the functions. Fig. 4.3 shows that the DM-based

4.2. Motivation 79

Table 4.2 Object size analysis of Microsoft Azure trace data [127]

Access Type Median Mean Mode

Read 8B 66.81 kB 28B

Write 1.4 kB 45.16 kB 63B

All 28B 61.90 kB 28B

object store is able to achieve a 59× geomean speedup over Amazon S3 and

a 2× speedup over the RDMA object store.

Caching - an additional benefit of DM: A CXL DM system transparently

caches object cache lines in the (on-chip SRAM or DRAM) hardware caches

of the compute server, thereby being served at a lower latency compared to a

remote memory server access. Such caching is extremely effective for FaaS

applications which exhibit good object access locality [127]. This is because

full FaaS applications, defined a state machine workflow of multiple individual

functions (“function chains”), demonstrate known communication patterns like

producer-consumer and broadcast within them [184]. This communication

implies that successor functions can potentially access objects produced by

any of its predecessors. When functions read objects from compute server

caches in the DM system their execution time further speedups by 2%-100%

(Fig. 4.3 DM+caching, assumes a DRAM cache of DDR4-like latency).

A relevant question is also if the hardware caches on compute servers can

handle caching FaaS objects. This is particularly important to investigate as

FaaS platforms optimize for cost by over-provisioning and densely packing

several 100s of function instances on a single compute server. Our analysis of

Microsoft Azure functions trace data reveals that the median size of objects is

just 28 bytes (Table 4.2) and 80% of objects are smaller than 12KB. Therefore,

objects can quite easily fit into existing caches and even more so with large

DRAM caches as present in several modern processors.

Summary: Our analysis indicates that maintaining FaaS objects in DM and the

caching benefits it provides largely mitigates the key performance bottleneck of

the FaaS paradigm.

80 Chapter 4. Āpta

4.2.2 The lack of fault-tolerance in current DM systems

FaaS object stores, such as Amazon S3, are designed to provide fault-tolerant

operation for a failure-prone datacenter environment. Object get and put atom-

ically read and write entire objects, with all or nothing semantics. A get is

also guaranteed to read the value of the most recent put, therefore providing a

strong consistency model known as linearizability [21]. This greatly simplifies

things for a FaaS developer who can simply assume that a get would return

the object written by the most recent put in the workflow.

Enforcing strong consistency in the presence of caching. In the caching

DM system, enforcing strong consistency for the FaaS execution environment

can be challenging. For example, consider a simple workflow consisting of three

functions: f1 → f2 → f3, where f1 and f3 read object X, while f2 writes to X.

Further, let us assume that f1 is assigned to server C1 while f2 is assigned to

C2. When f1 executes on C1, it would cache the object in C1. When f2 writes

the object, it would render the value cached in C1 stale. Suppose the FaaS

scheduler chooses to schedule f3 on C1, f3 would then read the stale value of

X, violating strong consistency.

One way to enforce strong consistency in the presence of caching is to employ

a cache coherence protocol. Conveniently, CXL 3.0 specifies an inter-server

MESI-based coherence protocol [154], that enforces the SWMR invariant. In

the above example, the write from f2 would invalidate the cached copy of X

in C1, ensuring that when f3 is scheduled on C1, it will read the most recent

value written by C2, and not the stale value.

Whither Fault tolerance? It is imperative that the aforementioned inter-server

cache coherence protocol operates correctly even when compute servers fail

or become unavailable. (In this work we assume that the DM server is kept

highly-available using techniques such as replication [146, 163] and power

redundancy.) Alas, traditional coherence protocols can block in the presence

of such failures. Consider the same example where f1 caches object X in

server C1. When f2 executing on C2, writes to X, the coherence protocol

would send an invalidation to C1 which holds the object. Now, should C1 fail

or become unreachable the write from f2 would simply block, waiting for an

4.3. Āpta 81

acknowledgment, thereby rendering the system unavailable. Even if C1 does

not fail but is simply slow to acknowledge (e.g., due to network congestion), the

write from f2 would be impacted, which can lead to high tail latency – a critical

issue for FaaS platforms [181].

4.2.3 Inefficiencies of DM for object stores

Current DM system standards specify fixed fine-grain data access, caching and

coherence mechanisms. However, object reads/writes typically have widely

variable sizes, ranging from bytes to MBs [44, 127]. This causes two key

inefficiencies. CXL enables compute servers to read cache lines from memory

server while objects frequently span multiple cache lines. Hence, reading an

object will incur multiple round trips to the DM, owing to limited MSHRs (miss

status handling registers).

Second, CXL permits single cache line atomic write while a put must atomically

write an object of multiple cache lines to the DM. This incurs additional latency

for software write-ahead-logging i.e., undo/redo logs. Our analysis for the above

benchmarks shows that a CXL object store will incur an average of 32% and

89% higher latency for get and put respectively, compared to an optimized

object granular DM (evaluation methodology in Sec. 4.4).

Summary: Supporting compute server caching mandates a fault-tolerant co-

herence protocol that enforces strong consistency in the presence of compute

server failures. CXL-based DM systems fail to provide this. Second, exist-

ing CXL cache line granular accesses are ill suited for FaaS object granular

accesses.

4.3 Āpta

Āpta’s goal is to design a DM-based object store for FaaS applications (Sec.

4.3.1) that provides fault-tolerant coherence (Sec. 4.3.2) and optimum perfor-

mance (Sec. 4.3.3). To accomplish this, Āpta designs DM hardware controllers

and modifies runtime software (Sec. 4.3.4). Sec. 4.3.5 walks through the

82 Chapter 4. Āpta

Figure 4.4 FaaS object sharing through DM: organization and addressing

working of the entire Āpta system when executing real-world FaaS applications.

4.3.1 Setting the stage: Designing a DM-based object store

This section describes how Āpta leverages the features of a CXL 3.0 based DM

system to construct an object store.

(a1) Sharing objects between FaaS functions through DM ▶ Extend shared

memory inter-process communication (IPC)

CXL 3.0 allows compute servers to access a shared memory region on the

memory server. The compute server OS discovers and manages this CXL

memory device as per UEFI/ACPI specifications [178] and exposes the DM

address space as an extended CPU-less NUMA region [107, 108, 143].

In Āpta, FaaS functions execute as independent processes on compute servers.

To access a shared object, the get and put operations map a DM memory re-

gion (containing the object) into their virtual memory using shared memory

inter-process communication (shmem IPC) [155]. The shmem IPC API is en-

hanced to allow function processes on different compute servers to mount a

shared memory region.

To illustrate, Fig. 4.4 shows the two functions f1 and f2 executing on server C1

and C2 respectively, sharing the object X of size 50MB through the DM system.

4.3. Āpta 83

On each compute server, the shmem IPC segment, where X resides, is located

in an extended NUMA physical address space (cPA - blue dashed regions in

Fig. 4.4). Just as in CXL, the access controls and page tables for end-to-end

address translation from compute server process virtual address (VA) to the

memory server physical address (mPA) are initialized and setup by the OS2.

Once mapped, the object is accessed by the CPU (during the compute phase

of the function) using load/store on cPA address. When these accesses miss in

the LLC, the request is routed to the “home node” of the extended NUMA region

(DM controller on the compute server). The DM controller uses the mapping to

verify permissions and provides the memory server physical addresses (mPA)

to be accessed.

(a2) Caching objects in compute server caches ▶ Defining a caching policy

Āpta introduces minimal changes to compute server caches, making them

almost oblivious to disaggregation (in the spirit of CXL). The get operation,

when mapping the shared object, sets the memory region of objects larger than

size of the LLC as uncacheable using PAT or MTRR[144]3. On an LLC miss, the

cache line is read from DM and allocated in compute server caches. Similarly,

objects are also write-allocated in the LLC. This policy allows retaining data in

the LLC for any expected future reuse.

Importantly, the put operation immediately writes all modified cached lines

through to DM, making the caches effectively write-through. This policy allows

tolerating compute server failures since a compute server LLC never holds the

only copy of the object, and the memory server always holds a valid copy. The

LLC silently evicts any of the DM cache lines which are in shared state i.e.,

the LLC does not issue a PutS coherence request to the directory. This saves

interconnect network bandwidth and avoids LLCs having to evict entire objects

if one of the object’s cache lines is evicted.

(a3) Exploiting the locality provided by caching ▶ Locality aware scheduling

policy

2CXL uses Address Translation Services (ATS) defined in PCIe Specification for translation
of cPA→mPA. The compute server OS sets the translation table base address register - ZMMU
[56] or extended page table pointer[99].

3Other object cache allocation policies can be employed - e.g., fraction of LLC capacity
per CPU, dynamically based on predictors of object hotness or reuse potential [133] etc. The
exploration of allocation policies is orthogonal.

84 Chapter 4. Āpta

The FaaS runtime schedules each function invocation on compute servers. The

scheduler makes intelligent heuristic decisions to achieve lowest execution la-

tency for the functions execution by accounting for various factors [51, 116, 182].

In Āpta, this runtime scheduler is used to exploit object locality by scheduling

invocations on compute servers where cached objects will be or are likely to be

reused. This allows functions to benefit from lower latency for object access.

This is done on a best effort, maximization basis. For generality, in this work,

the scheduler heuristically assumes that the function has a high likelihood of

accessing any object consumed or produced by any of its predecessors and

picks a compute server where most predecessors executed.

4.3.2 Fault-tolerant Coherence Protocol

The conventional MESI coherence protocol, specified in CXL 3.0, does not

provide reliable operation in an environment where compute servers can fail

independently. We now detail Āpta’s highly-available fault-tolerant coherence

protocol that is designed for a failure-prone cloud environment.

(b1) Keeping the cached objects on compute servers coherent ▶ Tailored

coherence mechanism and protocol

“Simplicity is prerequisite for reliability" - Edsger Dijkstra Simplified coherence:

Recall that a FaaS function reads the object from the memory server and

the compute server caches it in shared state; a put writes-through to the

memory server and subsequently invalidates all sharers of the object in other

compute servers. This eliminates the need for Modified or Exclusive states

and reduces the inter-server protocol to two stable states - Shared and Invalid.

This simplified coherence protocol, designed for the execution model of FaaS

functions, hardens Āpta against compute server faults.

This Āpta protocol is layered hierarchically over and above intra-server coher-

ence protocol. The intra-server coherence protocol is unchanged and regard-

less of this protocol Āpta enforces different policies in the inter-server protocol.

This hierarchic organization allows Āpta to track sharers at compute server

granularity (not individual caches within them). The Āpta protocol is employed

for all requests from the compute server to the DM server.

4.3. Āpta 85

Coarse granularity tracking: The use of DM in FaaS systems is restricted to

sharing objects. Thus, it suffices for Āpta to use variable-sized object granularity

tracking for the coherence protocol, as opposed to cache line level tracking in

traditional chip level coherence protocols. In other words, we use a single state

to encapsulate the state of all cache lines within the object. This is tracked

using an object unique triplet of (objID, base mPA, size).

(b2) Provide high-availability while enforcing strong consistency ▶ Lazy

invalidation of sharers with coherence-aware scheduling

Recall, to enforce strong consistency of the caches, a put completes only when

all servers caching that object are invalidated; therefore, put can block when

servers fail. This invariant of any conventional coherence protocol called Single-

writer-multiple-reader (SWMR) is enforced by synchronously invalidating all

sharers in the critical path of the put.

In Āpta, the sharers are sent an invalidation message asynchronously, i.e.,

the put is acknowledged immediately without waiting for the sharers to be

invalidated. The sharers that are sent invalidations are tracked off the critical

path until they acknowledge the invalidation messages.

This lazy invalidation policy: (a) allows the write to be acknowledged at lower

latency thereby improving performance and (b) more importantly, because

writes need not wait for sharers to be invalidated, there is no risk of writes being

blocked, thereby ensuring fault-tolerance.

Whither Consistency? Note, however, that this asynchronous protocol de-

scribed above could violate SWMR (and hence linearizability). This is because

at the instant the put is acknowledged there may be cached copies in other

servers yet to be invalidated.

Lazy linearizability with scheduler support. Āpta enforces linearizability

lazily using a combination of the coherence protocol and the FaaS runtime

scheduler. More specifically, Āpta never schedules function invocations on

servers with pending invalidations – the §Scheduling Correctness Criterion.

This correctness criterion ensures there is no risk of reading any yet-to-be-

invalidated stale objects present in the caches. More precisely, we are now in a

position to assert Lemma 1.

86 Chapter 4. Āpta

Lemma 1. The coherence protocol ensures that a get returns the value of most

recent put to that object.

Proof. Consider a get to object X. When the get is about to be scheduled,

there are either pending invalidations to X or there are none. If there are no

pending invalidations, there are no stale values and hence the get will return

the latest value as per the original synchronous protocol. If there are one or

more pending invalidations, the scheduler ensures that the function containing

the get is not scheduled on those servers with pending invalidations, and hence

there is no risk of get reading a stale value.

Thus, the Āpta coherence protocol ensures that the caches on the compute

servers where functions execute are strongly consistent. Meanwhile, caches

in compute servers where functions are not executing can be stale without

affecting consistency. Another benefit of Āpta’s lazy invalidation protocol is the

ability to perform coherence actions at line-rate. This is particularly important

for processing packets in the data plane on DPUs or SmartNICs in the network

[48, 142].

4.3.3 Addressing the inefficiencies of DM

This section describes Āpta’s optimization to adapt the DM system for object

idiosyncrasies.

(c1) Object-granular reads ▶ Via bulk cache line loads

Recall, for each object load request that miss in the LLC, the DM controller on

the compute server issues a single cache line read request over the intercon-

nect making it inefficient for objects spanning multiple cache lines.

CXL 3.0 [34] does provides fixed block request semantics (2 or 4 contiguous

cache lines) with the block request size to be specified in advance. However,

objects have more variable block sizes and compute server LLCs cannot specify

the block size in advance as they operate oblivious of objects.

Āpta builds on CXL 3.0 to provide variable sized, bulk cache line requests. It

bulk reads all the objects cache lines into the compute server cache in one

4.3. Āpta 87

Figure 4.5 Operation of get (left) and put (right) using controllers on the com-

pute and memory servers (controllers shaded in orange).

round trip to the memory server (similar to [36]), providing the lowest possible

latency and maximizing the interconnect bandwidth utilization. This process is

illustrated in Fig. 4.5, left. The GET controller (optimized DM controller) issues

the LLC’s read request over the interconnect. The memory server reads all

cache lines constituting the object from DRAM memory. It replies with all these

cache lines and squashes/ignores any immediate requests for this object from

that compute server. The GET controller receives all the prefetched cache lines

and inserts them into the respective cache sets in the LLC. The LLC forwards

the demand miss cache lines to lower level caches and the CPU.

(c2) Object-atomic writes ▶ Transactional atomic durability

Recall, CXL permits atomic writes of single cache lines which forces a put

to use software transactions (libpmemobj API) to write an object of multiple

cache lines atomically to the DM system. These transactions use software

logging (undo or redo) which adds significant number of additional instructions

per transaction, hurting latency and throughput.

Āpta provides hardware transactions for object atomic writes to improve perfor-

88 Chapter 4. Āpta

mance (similar to [66, 114]). The hardware transaction ensures that when an

object put is executed, either the entire object is persisted4 or, in case of fail-

ures, any partial writes are collectively discarded. If the transaction succeeds,

the memory server overwrites the new version into the objects memory area. If

the transaction fails, it is retried, assuming the cause of the failure is transient.

If a retry threshold is exceeded, the exception is reported to an external FaaS

infrastructure system and the entire function execution is considered to have

failed.

In the compute server, the PUT controller, co-located with the CPU, flags

for persistence all the cache lines written by an object put. The controller

orchestrates an atomic transaction, using a one-phase commit protocol with

the memory server (Fig. 4.5, right). When the memory server issues a commit

response, the PUT controller clears the persistence flags.

4.3.4 Realizing Āpta’s architecture

We now detail the memory server components - data plane controllers, control

plane software and the interaction between them required to realize Āpta. We

also describe in detail the coherence protocol sketched out in the previous

section.

4.3.4.1 Micro-architecture of data-plane controllers

The data plane on the memory server is composed of a conventional memory

controller and the Āpta controller. The Āpta controller is composed of four

modular sub-controllers as shown in Fig. 4.1. This section details the micro-

architecture of these controllers, each providing a certain functionality.

Object Serving sub-controller (OSC):

≻ Function: Serving objects (bulk cache lines) when the GET controller re-

quests an object’s cache line.

The OSC translates the requested mPA to an object triplet. For this, OSC

4Recall the memory server is usually kept highly-available and persistent

4.3. Āpta 89

walks the object mapping data structure, populated by the FaaS runtime object

manager (See 4.3.4.2). Similar to page tables, this translation latency can be

reduced by using TLBs, page walk caches, cuckoo filters [167] etc. Once the

physical address of the object is retrieved, the OSC issues memory access

requests to the memory controller and replies to the compute server once it

receives the data from it.

Object Persistence sub-controller (OPC):

≻ Function: Ensures the entire object is persisted, atomically into the DM

system.

Recall, an object put initiates a one-phase commit protocol, between the PUT

controller on the compute server and OPC on the memory server, to atomically

write all the objects cache lines. As shown in Fig. 4.5 (right), first, the PUT

controller on the compute server CPU sends a prepare message with the

objID, the number of cache lines and their positions within the object to be

written and the . Then, it issues cacheline writeback (clwb[75]) for all the cache

lines that are written by the put. The data from these cache lines, resident

anywhere in the cache hierarchy of the compute server, are flushed to the

memory server. OPC uses buffers to temporarily stage cache lines written

back from the compute server. These buffers can be implemented either as

SRAM registers at the LLC for small objects or a dedicated DRAM area for

larger objects. OPC expects to receive a fixed number of cache line writes to

complete the object write (received in the prepare message). Once it receives

all cache lines of the object, it replies with a commit message, marking the end

of transaction. OPC notifies object tracker controller (OTC) of the competition

of an object write and flushes/drains the buffers to the memory controller.

Object Tracker sub-controller (OTC):

≻ Function: Serves as the directory for the Āpta coherence protocol.

Similar to a conventional directory, OTC maintains entries about the state and

sharer vector for each object triplet. The OTC directory represents the ordering

point for all requests. The directory is inclusive of all the compute server LLCs

i.e., it holds directory entries for a superset of all objects cached in all the

compute server LLCs. A miss in this directory cache indicates that the object is

in state I. The sharer list tracked is not precise since the compute server LLC

silently evicts blocks in shared state.

90 Chapter 4. Āpta

Figure 4.6 OTC (Directory): Complete coherence protocol. I, S are stable

states; SI, SA are transient states

The protocol: OTC uses a simplified coherence protocol with Shared and

Invalid stable states, avoiding the Modified and the Exclusive States. This is

in line with the CXL specification as it flexibly allows implementations to use

fewer stable states in the protocol. (We discuss further details of the CXL

protocol in Sec. 4.5.1.) Most coherence protocols involve transient states since

transition from one stable state to another is not typically atomic [134]. Āpta

re-purposes a transient state to account for the asynchronous invalidations.

Fig. 4.6 illustrates the transition diagram for the OTC directory controller (with

events and actions on stable and transient states). For ease of explanation, this

protocol assumes that FaaS applications are race-free, i.e., no put or get can

occur during an ongoing put. (However, the actual Āpta protocol can handle

buggy FaaS applications with races as well.) A put event is triggered on the

completion of an object persistence transaction by the OPC; a get event is

triggered at the beginning of an object serving request by the OSC. An “Invalid”

state for an object implies it is not cached in any compute server. A “Shared”

state implies the object is cached in readable state in one or more compute

servers. The transient state SA signifies that the new version of the object is

cached in Shared state in one or more compute servers and there are pending

invalidation-Acknowledgments from one or more compute servers for the old

version of the object.

Suppose the directory receives a put for an object currently in shared state.

Once the put transaction completes, the directory performs 3 actions in parallel

4.3. Āpta 91

- acknowledges the write, notifies the object invalidation controller (OIC) to

send invalidation messages to all prior sharer compute servers, clears the old

sharer vector and adds the compute server that requested the put as a sharer

for the new version of the object (Recall the caching policy is write-allocate -

compute server retains the object after a put). The directory then transitions

to SA until it receives all invalidation-acknowledgments. While in this state the

directory can still service a get or put request for the object. For a get, the OSC

responds with the latest object version, satisfying Lemma #1. Once OIC notifies

that all outstanding invalidation-acknowledgments are received, the directory

transitions back to shared state for the object.

The organization: The directory is organized as a standalone, set-associative

directory cache structure at object granularity. When a directory cache set is

full, the directory controller evicts a cold, shared object in the set. It issues an

invalidate to all compute server sharers that cache this object and transitions to

transient state SI. Any requests to the object while in this state, are stalled until

all invalidations are acknowledged and an entry becomes available. Sizing the

directory cache appropriately and correctly identifying cold objects can ensure

that operations can continue at line-rate, without stalling.

Object Invalidation sub-controller (OIC):

≻ Function: Invalidates stale objects cached in compute servers.

The OTC requests the OIC to invalidate an object triplet (objID, base mPA,

size) on a set of compute servers. OIC issues invalidation messages to the

compute servers for all the object’s cache lines. At the compute server, the

challenge however is translating the mPA address of the object to cPA address

to issue invalidations to caches. This is achieved using an efficient object

based reverse mapping [38], implemented in Linux for reserve mapping virtual

memory (rmap chains)5. This reverse mapping is used by system calls like

mmap, munmap, madvise etc. However, this is an expensive software call

(measured to be ∼1.4µsec per call) invoked by GET controller using interrupts

and adds significant time overhead. Recall, in Āpta, invalidations are out of

the critical path and hence this does not affect performance. Finally, the GET

5Originally an object in [38] referred to a memory mapped file which maps a range of data
to a range of physical addresses. This works very well for our purposes since FaaS objects are
also allocated contiguously within a range.

92 Chapter 4. Āpta

controller sends invalidation-acknowledgments.

The OIC tracks the number of invalidation-acknowledgments that are outstand-

ing from each compute server using a counter. It notifies the OTC when all the

invalidation-acknowledgments are received.

4.3.4.2 Control-plane software

Āpta modifies existing FaaS runtime control-plane software [101]. This software

runs on the low-power SoC of the memory server. We outline the changes

required in two of these components and describe their interface to the Āpta

hardware controllers.

Executor Manager (EM):

≻ Function: Responsible for scheduling and tracking the execution of the state

machine workflow of FaaS applications.

EM selects a suitable compute server to schedule a function invocation and

passes the invocation parameters to the function sandbox. EM scheduler is

guided by the performance and correctness criteria when scheduling function

invocations.

≻ Hardware interface: When scheduling functions, if the set of all objects

to be accessed by the function is unknown (not declared), the scheduler

queries the OIC to exclude all compute servers which have pending invalidation-

acknowledgments. If the set of objects to be accessed by a function are de-

clared in the state machine workflow, the scheduler looks up the object in OTC

to determine where scheduling can be beneficial (current sharers) and if any

compute servers are to be excluded (invalidation-acknowledgment pending).

The OIC/OTC would expose hardware APIs for the scheduler to read this infor-

mation. Note, CXL 3.0 specification recommends that the compute server meet

an average latency target of 90ns for responding to invalidation requests. With

this response target and round-trip network latency, we expect that invalidations

will resolve very quickly and the invalidation-acknowledgement pending nodes

at any time will be very short. Therefore, we expect the impact of asynchronous

invalidation on scheduling to be minimal.

4.3. Āpta 93

Object Manager (OM):

≻ Function: Responsible for memory allocation and de-allocation of objects in

the memory server.

The objects are allocated in mPA in fixed bucket sizes (rounded up to the nearest

fixed bucket size). The buckets are allocated as a contiguous physical memory

address range, aligned at the cache line boundary in the memory server. This

memory allocation strategy is akin to the memcached slab allocator [121] The

OM runtime stores an object mapping data structure of mPA to unique objID,

at a fixed location in memory. This data structure is organized as a radix tree

followed by a trie6.

≻ Hardware interface: For serving objects, the OSC controller reads the object

mapping data structure written by the OM runtime (from the fixed location

in memory) and responds to the compute server mPA request with object-

granularity bulk read semantics.

4.3.5 Putting it all together

Fig. 4.7 illustrates the application state machine workflow of three real world

FaaS applications [100, 109] with the objects accessed by each function and

annotated with an instance of scheduling decision made by the EM on a cluster

of compute servers (C1 to C4) connected to access the Āpta object store.

We walk through the working of Āpta with the sentiment analysis application

(Fig. 4.7, App 3) that evaluates customer reviews for products of a company

and is triggered when the collated raw reviews file (csv) is uploaded to the

object store.

When read_csv function on C1 receives a invocation trigger, the get call (rdata

= get(“raw_data.csv")) maps rdata to the shmem IPC region, located in the

DM address range on C1. When rdata is accessed, the LLC miss triggers a

request to the GET controller. The OSC controller responds with a set of cache

6For object mapping, a combination of space efficient radix tree and lookup time efficient
trie is used (inspired from page table in virtual memory and longest prefix match in routers,
respectively). The radix tree traversal first points to 4KB/2MB page. Within the page, objects
are organized as a trie. This organization ensures the data structure can be read in hardware
controllers.

94 Chapter 4. Āpta

Figure 4.7 FaaS applications annotated with object store interactions and

scheduling decisions; highlight color changes indicate object writes requiring

invalidation

lines of the object. All subsequent accesses to rdata in the computation hit in

the caches. The put call atomically writes parsed_reviews object to memory

server using hardware transaction between the PUT controller and OPC. C1

caches both raw_data.csv and parsed_reviews objects and accordingly, the

OTC tracks C1 as a sharer of these objects.

Next, the sentiment_analysis function, scheduled on C2, similarly performs a

get on parsed_reviews. On access the object is brought into the LLC, making

C2 a sharer for the object. After computation, a put call writes a new version

of parsed_reviews to the memory server. The Āpta protocol acknowledges the

write from C2 immediately and sends invalidation to C1 asynchronously, track-

ing C1 as having outstanding invalidation-acknowledgments. When scheduling

the next set of parallel functions, the EM checks with OIC and does not schedule

the functions on C1 to satisfy §Scheduling Correctness Criterion. Scheduling

on C2 provides opportunity to exploit locality as it previously executed a prede-

cessor function. Accordingly, publish_to_sns and write_to_db are scheduled on

C2 and both functions benefit from cache hits for accesses to parsed_reviews.

4.4. Evaluating Āpta 95

4.4 Evaluating Āpta

4.4.1 Evaluation goals

(i) Compare performance of Āpta against the following state-of-the-art com-

pute server fault-tolerant systems:

• RDMA-based object store with Faa$t caching [155]: An immutable

object caching protocol run using two-sided RDMA verbs over In-

finiband. On a put, write-through to object store with no sharer

invalidation. On a get, if cache hit, incur one round trip to object

store to ensure cached data is not stale (no object data transferred

unless data is stale); if cache miss, read object from remote object

store.

• faster RDMA-based object store with Faa$t caching: Uses the same

interconnect as Āpta for RDMA, along with the above Faa$t software-

based object caching protocol. This configuration allows us to isolate

the benefits of improving just the underlying interconnect (transport

layer).

• faster RDMA-based object store with Āpta caching: Uses the same

interconnect and Āpta’s object caching protocol but in software. This

configuration allows us to quantify the benefit of our optimized coher-

ence protocol.

• CXL uncached DM: The cache line granularity CXL DM, that achieves

fault-tolerance by disabling caching of any DM data (therefore, re-

quires no coherence protocol). This configuration allows us to quan-

tify performance benefits of caching in DM and object semantic op-

erations proposed for Āpta. This configuration is achieved by using

gcc provided intrinsics void _mm_stream_*() to bypass the cache.

These non-temporal writes “stream” a write from the processor di-

rectly to the memory [42]

(ii) Demonstrate the fault-tolerance and resilience of Āpta

(iii) Break-down performance gains for get and put operations (compute time

is kept constant for all configurations)

96 Chapter 4. Āpta

(iv) Evaluate robustness of performance gains with respect to varied intercon-

nect properties and compute server capabilities.

4.4.2 Evaluation methodology

Our evaluation of Āpta is driven by a simulator based methodology (similar to

DM proposals [22, 98, 99]). We now set out the workloads and configuration

parameters used in the simulation of such a system.

Table 4.3 FaaS applications evaluated, annotated with schedule

Application Functions (compute server c1-c3)

(Patterns; Input data size; Max RSS)

PHI data [100] identifyPHI (c1), deIdentify (c2),

(Broadcast, Pipeline; 20KB; 100MB) anonymize (c1), analytics (c1)

Sentiment Analysis [100] readcsv (c1), sentimentAnalysis (c2),

(Broadcast, Pipeline; 480KB; 93MB) publishSNS (c2), writeDB (c2)

FINRA [100] fetchMarket (c1), fetchPortfolios (c2),

(Broadcast-Gather; 1.2MB; 23MB) volume (c1), trdate (c2), lastpx (c3),

side (c2), marginBalance (c1)

Video Transcode and Analysis [109] locateKeyFrame (c1), splitVideo (c1),

(Scatter-Gather, Pipeline; 2MB; 117MB) AnalyzeProcess (c1,c2), validate (c3),

concat (c3)

Image Prediction [100] resize (c1), predict (c1), render (c1)

(Pipeline; 2.7MB; 357MB)

Serverless GEMM (sparse) [164] split (c1), mapper (c1, c2), split (c1),

(Map-Reduce; 234KB; 943MB) reducer (c1, c2)

4.4.2.1 Workloads

We use 6 full FaaS application workflows, totaling 26 functions, from different

domains seen in FaaS - text, numeric, image, video processing. We simulate

these full FaaS application workflows from start to finish to demonstrate realistic

cache hit rate, invalidations and scheduling decisions. For each application,

Table 4.3 shows the communication patterns in the workflow, input data size,

constituent functions and a chosen instance of a schedule for an invocation.

These applications cover the full range of characterized input dataset/object

4.4. Evaluating Āpta 97

sizes and function communication and invocation patterns [127, 139, 184]. The

applications use local DRAM main memory to store intermediate data, akin to a

scratchpad. Table 4.3 shows this measured local memory usage excluding the

input object (max resident set size). We report the geometric mean speedup

as an aggregate statistic across all applications.

Table 4.4 Configuration of the Āpta simulated system

3 Compute Servers

Processor single socket, 3.0 GHz; Int/FP Ops: 0.02 CPI

L1 I/D Cache 256KB, 8-way, private per core, 1 cycle

L2 Cache (LLC) 32MB, 16-way, shared, 10 cycles, 128 MSHRs

Local Directory embedded in L2, fine sharing vector (cores, cachelines)

Local Memory 2 × 8GB DDR4-2400 MHz, 1 channel

1 shared Disaggregated Memory Server

Directory (OTC) 20-cycle, coarse sharing vector (compute servers, objects)

Memory 2 × 8GB DDR4-2400, 1 channel

Interconnect

Latency & Bandwidth point-to-point, 500ns, 80Gbps full-duplex

4.4.2.2 System configuration

We model a DM system with four servers (3 compute servers and 1 memory

server). Each compute server has a single socket CPU with local DRAM mem-

ory. The CPU has per-core L1 and a socket-shared L2 cache, kept coherent

with a directory-based MOESI protocol. Within the memory server, we simulate

DDR4 DRAM memory, along with the Āpta controllers. The compute servers

connect to the DM server with ordered point-to-point links of a fixed latency and

bandwidth (full system config in Table 4.4).

The RDMA configurations are measured on same hardware as in Sec. 4.2.

To model futuristic, faster RDMA (RDMAf - running over the same PCIe gen5

interconnect as Āpta), we add the latency overheads incurred for using RDMA

operations and software coherence protocol to Āpta’s network latencies, as an

approximation. Object get/put operations in a key-value store using RDMA to

read/write data from/to remote memory are an average of 2.2× slower than

CXL [62]. Above this, fault-tolerant coherent object get/put operations require

98 Chapter 4. Āpta

employing key-value stores like Faa$t and Hermes [93], which use complex

two-sided RDMA, adding even more latencies. We measured this as the latency

difference between a write in Hermes and a one-sided RDMA write (≈14 µsec

per call, fixed overhead irrespective of object size). We use these overhead

latencies along with the respective coherence protocol actions to simulate

RDMAf+Faa$t and RDMAf+Āpta.

4.4.2.3 Simulator setup

We simulate the identical shared memory version of the full FaaS applications

written in python, compiled down to C. We generate traces of these programs

using the Prism framework [140], which uses Valgrind to generates traces of

compute, memory, thread create/join and barrier events. The tool produces

synchronization and dependency-aware, architecture-agnostic traces. These

traces are manually annotated with FaaS phases of execution i.e., get/compute/

put.

We replay the traces in a modified gem5 simulator [157]. We implement the

proposed inter-server Āpta coherence protocol and its hardware controllers.

OSC and OTC lookup incur latency of 20 cycles each, modeled on average

address translation and directory lookup latencies in modern processors [67].

Memory ops are simulated with a detailed memory hierarchy. The replay mech-

anism uses FaaS phase of execution annotations to apply appropriate memory

access characteristics for each phase of execution i.e., caches+local memory

for compute, caches+DM for get/put. The get phase of execution bulk loads

cache lines of the object over the interconnect (as described in Sec. 4.3.3 c1).

The put phase of execution uses the one-phase transaction commit protocol

to write-through the modified object cache lines over the interconnect (as ex-

plained in Sec. 4.3.3 c2). Integer and floating point ops are simulated with fixed

CPI. We use an aggressive CPI and larger, lower latency L1/L2 caches to repre-

sent execution with optimized libraries (as in Sec. 4.2.1). This simulator setup

speeds up the computation phase of FaaS functions by 5× geomean compared

to unoptimized (single thread) python functions run on a Intel i7-9700K machine.

(Note this is conservative as Intel python extensions provide 200× speedup for

scitkit-learn, 90× for pandas, 3× for tensorflow [76].)

4.4. Evaluating Āpta 99

phi data

sen
tim

ent analysis finra

video transco
de

image pred
icti

on

serv
erle

ss gemm
geomean

1

1.5

2

2.5

S
p

ee
d

u
p

(n
or

m
a
li

ze
d

to
R

D
M

A
w

/o
ca

ch
in

g)

RDMA+Faa$t RDMAf+Faa$t

RDMAf+Āpta CXL+uncached

Āpta

Figure 4.8 Performance comparison of all configurations, normalized to RDMA

without caching, for 6 full FaaS applications comprising of 26 FaaS functions

4.4.3 Evaluation results

4.4.3.1 Performance benefit and analysis

Fig. 4.8 shows the performance of all configurations normalized to a baseline

RDMA-based object store without caching.

Result 1: Āpta provides 42% geomean speedup over state-of-the-art RDMA+Faa$t.

This performance gain comes from three sources: (a) improved network, (b)

optimized Āpta coherence protocol, and (c) using hardware controllers for ob-

ject access and coherence in DM. The RDMAf+Faa$t configuration provides

7% performance improvements over RDMA+Faa$t, showing the performance

gains from just the improved network. Next, employing Āpta’s coherence pro-

tocol over RDMAf (RDMAf+Āpta) provides further 12% improvement over the

previous RDMAf+Faa$t, showing the performance gains from our optimized

coherence protocol. Finally, Āpta’s use of DM hardware-controllers eliminates

the irreducible software overheads of RDMAf, thereby providing 18% higher

performance than previous RDMAf+Āpta.

Result 2: Āpta provides 24% geomean performance gain over CXL-uncached

by using a fault-tolerant object caching protocol and object semantic read-

s/writes. Note that employing the CXL-uncached object store will perform

worse than a faster RDMA-based object store with caching (RDMAf+Āpta),

emphasizing the need for Āpta’s design in a DM system.

100 Chapter 4. Āpta

Result 3: We also evaluated the performance against the non fault-tolerant

cached CXL DM. Āpta provides 10% geomean speedup over this CXL-cached

system (not shown in graph). This shows that there is no performance cost to

Āpta’s fault tolerance; in fact, Āpta shows a small improvement in performance

because it addresses CXL’s inefficiencies owing to its cache line granular ac-

cesses.

4.4.3.2 Fault-tolerance validation

We verify the complete Āpta protocol (with additional states to handle races, if

any applications misbehave), in the Murϕ model checker [40] and exhaustively

verified for liveness (deadlock-freedom) and safety (linearizability). Importantly,

we also model check to prove correct and non-blocking behavior in the presence

of sharer compute server failures. These Murϕ model files for the protocol are

available online7.

Result 4: Because the Āpta protocol does not wait for acknowledgments in the

critical path, it has the potential for lower tail latencies. To measure this, we run

the applications 50 times under variable network latencies to reflect real world

rack scale networks [148] and measure the standard deviation of execution

times. The network requests experience a random latency within a Gaussian

distribution (40% variation around the mean as measured for an Infiniband

network [92]). On average, applications exhibit 32% lower standard deviation

of execution time with Āpta compared to the non fault tolerant CXL-cached

system, demonstrating the resilience of Āpta.

4.4.3.3 Performance Break-down

For the simulated schedule, Table 4.5 shows the number of gets which hit in

the cache (compulsory cache miss for first get request on all compute servers,

while subsequent gets may potentially hit in the cache) and the number of puts

that require sharer invalidations (these puts jeopardize DM system availability

and increase latency with the blocking CXL-cached protocol).

7https://github.com/adarshpatil/apta

4.4. Evaluating Āpta 101

Table 4.5 Analysis of get and put characteristics for FaaS application execution

App ↓ / Num. of→ gets (cache hit,miss) puts (no inv, with inv)

PHI data 4 (2,2) 4 (4,0)

Sentiment Analysis 4 (2,2) 2 (1,1)

FINRA 5 (3,2) 3 (2,1)

Video Transcode 5 (2,3) 6 (5,1)

Image Prediction 3 (2,1) 3 (3,0)

Serverless GEMM 6 (3,3) 6 (6,0)

Result 5: Āpta lowers geomean get latency by 90%, compared to RDMA+Faa$t’s

57% reduction and CXL-uncached 71% reduction over baseline. Fig. 4.9, left

shows the total get latency, normalized to baseline for each application. Al-

though, both caching mechanisms (RDMA+Faa$t and Āpta) see same cache

hit rate, Āpta lowers geomean get latency by using an improved protocol and

the DM interconnect.

phi data

sen
tim

ent analysis finra

video transco
de

image pred
icti

on

serv
erle

ss gemm
0

0.2

0.4

0.6

0.8

1

T
ot

a
l
g
e
t

ex
ec

u
ti

on
ti

m
e

RDMA RDMA+Faa$t CXL+uncached Āpta

phi data

sen
tim

ent analysis finra

video transco
de

image pred
icti

on

serv
erle

ss gemm
0

0.2

0.4

0.6

0.8

1

T
ot

al
p
u
t

ex
ec

u
ti

o
n

ti
m

e

RDMA RDMA+Faa$t CXL+uncached Āpta

Figure 4.9 Object get and put latencies, normalized to RDMA without caching

Result 6: Āpta achieves the highest 81% reduction in geomean put latency,

compared to 63% reduction for CXL-uncached. Fig. 4.9, right shows the base-

line normalized total put latency. Since a put operation always writes through

to the object store, RDMA and RDMA+Faa$t see the same put latencies. Āpta

achieves the reduction by using optimized hardware transactions over an im-

proved DM interconnect.

102 Chapter 4. Āpta

40 80 100 150 200

1.4

1.6

1.8

2

2.2

2.4

2.6

(a) Inter-connect Bandwidth in Gbps

S
p
ee
d
u
p

200 300 400 500 600

1.4

1.6

1.8

2

2.2

2.4

2.6

(b) Inter-connect latency in ns

phi sentiment image

video finra gemm
geomean

Figure 4.10 Speedups of Āpta over baseline for varied interconnect character-

istics (a) bandwidth and (b) latency

4.4.3.4 Sensitivity studies

Āpta performance gain is subject to the compute-to-communication ratio of the

application. Therefore, we study the performance sensitivity due to variations

in interconnect characteristics and computation capabilities.

Result 7: The performance of Āpta improves with increase in bandwidth of

the DM network, seeing 90% geomean speedup over baseline for 200Gbps.

Interconnect latency has a smaller impact on the performance of Āpta. Āpta still

provides a 84% geomean speedup with high latencies of 600ns, as expected

for CXL switched fabrics. Fig. 4.10 a & b summarizes the speedups of Āpta

over baseline, for varied interconnect network latencies and bandwidth.

Result 8: Āpta’s performance gain marginally reduces to 78% geomean with

lower capability compute cores, as computation segment latency dominates in

the total execution time. Fig. 4.11 shows the speedups obtained as we vary

integer and floating point operation CPI of the core for both baseline and Āpta.

4.4.4 Evaluation summary

Āpta provides performance gains over all types of FaaS applications – from

communication to compute heavy, applications with high object reuse and those

4.5. Discussion 103

0.0
1
0.0

2
0.0

5 0.1 0.2

1.4

1.6

1.8

2

2.2

2.4

2.6

CPI for Int/FP operations in compute

S
p
ee
d
u
p

phi sentiment image

video finra gemm

geomean

Figure 4.11 Speedups of Āpta over baseline for varied computation capability,

represented by varying integer and floating point CPI (cycles per instruction)

with lower reuse, applications with serial and multiple parallel functions and over

a range of object sizes.

4.5 Discussion

4.5.1 Specifics of CXL support for Āpta

Āpta’s design introduces only minimal changes to the CXL protocol and the

servers. We now discuss (i) the precise CXL protocol leveraged to design Āpta

and (ii) changes needed to the CXL protocol specification to realize Āpta’s fault-

tolerance benefit. We refer to relevant sections in the CXL 3.0 specification [34]

in the discussion.

Using CXL.mem protocol for pooled shared memory: CXL 3.0 specifica-

tion defines the creation of a pooled memory device where multiple compute

servers are configured to access a single memory region concurrently - called

“shared FAM" (fabric attached memory) (Sec. 2.4.3). Āpta designates the co-

herency model for the shared FAM as “hardware coherency with a directory"

104 Chapter 4. Āpta

(Sec 2.4.4 8) and builds over the CXL.mem hardware coherence protocol (Sec

3.3). While CXL does not specify the detailed implementation of the directory,

it does allow for tracking fewer states per cacheline i.e., 2 or 3 states instead

of the original 4 state MESI protocol (Sec 3.3.3 Implementation Note). Accord-

ingly, Āpta encodes the state of the cacheline using I and A stable states as

per the CXL.mem parlance and implements the directory logic in the OTC. To

send invalidations and receive invalidation-acknowledgments to/from compute

server caches, OTC uses Back-Invalidation Snoop (BISnp) and Back Invalida-

tion Response (BIRsp) messages (Sec 3.3.7, Sec 3.3.8), sent over dedicated

S2M BISNP and M2S BIRSP channels (Sec 3.3.2).

Permitting asynchronous invalidation in CXL.mem protocol: The CXL 3.0

specification clearly defines the blocking behavior of BISnp requests (Sec 3.3.3).

The synchronous invalidation behavior is further reinforced in the ordering rules

(Sec. 3.4, Table 3-50 and Appendix C.1.2). Āpta requires the synchronous

BISnp condition to be relaxed in the specification. This would allow implementa-

tions like Āpta to respond to write requests and other read requests immediately

without waiting for the invalidation to complete.

4.5.2 Generality of proposed hardware

Designing controllers for CXL memory is currently under active development.

CXL is being investigated to provide persistent memory[114], pooled remote

memory to expand memory capacity [108], near-memory accelerators on CXL

[70] and dynamic tiered memory [73]. Efficient implementation of these de-

signs requires controllers for data persistence, address translation and data

coherence. Āpta’s controllers OPC, OSC and OTC basically provide the afore-

mentioned services and can be adapted to suit these and other emerging

application.

The design of Āpta brings software oriented key-value stores (employ get/put

API to retrieve/store data) closer to traditional hardware supported shared mem-

ory (use loads/stores to memory addresses). Āpta enables a hybrid memory

8CXL 3.0 permits the coherency model of the shared FAM to be either hardware coherency
or software-managed coherency.

4.5. Discussion 105

system with an interface similar to that of shared memories along with the

flexibility of granularity provided by key-value stores. The additional flexibility

is enabled by the several controller components in the design, which can find

wider applicability for other use-cases as well [70, 73, 114].

Āpta enforces coherence at an object granularity, thereby providing a strong

consistency model for the DM. Āpta’s per-object linearizable reads and writes

consistency model is similar to today’s production object stores like S3 [21],

thus making it easy for adoption without needing any FaaS program changes.

Concerns over use of write-through caches: Note that every write is not

written through; writes to cache lines that make a put are written through only at

the end of each function. Such a policy is inevitably necessary for maintaining

high availability and strong consistency in the presence of compute server

failures, albeit at the expense of some bandwidth. It is worth noting that existing

works [21, 155] have also employed a similar policy.

4.5.3 FaaS scheduler deep-dive: Case study Kubernetes

How does Āpta interface with the scheduler? Using Kubernetes as a case-study

we address this question.

FaaS schedulers are complex frameworks that correctly and efficiently schedule

functions on compute nodes. Notably, several custom built [50, 111, 116] and

cloud provided [4, 60, 126] frameworks exist.

The kube-scheduler component of Kubernetes is an example of such a sched-

uler. It considers several factors like individual and collective resource require-

ments, hardware/software policy constraints, affinity/anti-affinity specifications,

inter-workload interference etc., when making scheduling decisions [101]. The

scheduler has two cycles: a serial scheduling cycle and a parallel binding cycle,

with each cycle consisting of multiple stages. Āpta can use existing stages in

the serial scheduling cycle to achieve its objectives. Specifically, the pre-filter

stage can query the OIC and remove invalidation pending compute servers

from scheduling decisions (for correctness). The pre-score stage can add affin-

ity labels to nodes with locality which can then be used in the score stage to

106 Chapter 4. Āpta

preferentially select these nodes.

With accelerated FaaS function executions, as achieved in this work, we believe

that the Kubernetes scheduler would become the new bottleneck. This is be-

cause the current design of Kubernetes provides far lower throughput than what

is required to operate such high-performance systems at high efficiency. Im-

proving the scheduler is currently a subject of active research in the community

and is left for future work.

4.6 Related work

Resilient coherence protocols: A class of works [1, 45, 46] design coherence

protocols that can tolerate dropped and faulty messages. They reissue requests

on a timeout to recover, but crucially assume all participants are alive. Āpta

is the first work to handle complete node failures. The CXL specification also

does not directly specify timeouts but instead recommends that components

meet latency targets for various CXL Transactions (Table 13-2 of the CXL spec

[34]). Additionally, designing suitable timeouts for transactions in distributed

systems is a complex problem [102].

FaaS applications: A number of works [35, 96, 117, 181, 182, 192] composed

function benchmarks and software stacks employed in FaaS platforms. They

also demonstrate several FaaS inefficiencies: data communication, cold start

etc. Āpta addresses a chief inefficiency of FaaS – data transfer overheads and

provides a fault-tolerant DM system for FaaS applications.

Reducing communication overheads in FaaS: Several works [115, 133,

155, 165, 169, 186] aim to provide software-based caches at compute servers

to cache objects. These works reinforce the potential of caching to improve

performance despite being connected by fast networks. Āpta provides software

transparent object caching using CXL-based DM.

Faastlane [100], SAND [2] co-locate functions within an application (restrict-

ing scheduling) as threads/light-weight contexts to use local shared memory

for low communication latency. Āpta allows function processes, to access

shared objects from local caches if co-located, but critically also permits flexible

4.6. Related work 107

scheduling, anywhere in the DM system.

High performance remote memory: Numerous works [36, 41, 54, 64, 141,

163] have used RDMA interconnects to provide software-based remote mem-

ory for applications. Āpta overcomes inefficiencies of RDMA by using DM,

providing the highest performance remote memory. MIND [105] accelerates

RDMA remote memories with in-network coherence and memory management.

Analogously, Āpta designs a hardware coherence protocol for a DM object store

but crucially enforces availability in the presence of compute server failures.

In the cloud, RDMA is still not widely available. Cloud providers such as Mi-

crosoft [12, 152] and Alibaba [53] have shown interest in researching various

techniques, pros and cons of deploying RDMA in the cloud. In production, Ama-

zon AWS offers Elastic Fabric Adapter (EFA) [10] as an alternative to RDMA

over InfiniBand. EFA is a network interface for Amazon EC2 instances that

enables customers to run applications requiring high levels of inter-node com-

munication at high performance. EFA runs an Amazon proprietary network

protocol on top of commodity ethernet. However, EFA has been found to have

several performance drawbacks - higher latency and lower bandwidth than

RDMA [197]. Āpta demonstrates that CXL can be employed to provide better

high-performance networks in the cloud, avoiding the several issues that exist

in making RDMA cloud viable.

For the programming interface, the recommended interface for cloud applica-

tions to access EFA is libfabric [80]. It defines a unified communication API

for high-performance distributed applications and abstracts several diverse

technologies like MPI, SHMEM, PGAS etc. It also supports multiple network

communication backends. Āpta can easily integrate with libfabric using the

SHMEM interface and be made available to cloud applications.

Disaggregated memory: This line of work use hardware-supported operations

[110] to provide remote memory. Clio [65] defines explicit virtual memory API

calls for processes on compute servers to allocate, read/write and synchronize

accesses to the DM. COARSE [188] uses DM to accelerate distributed deep

learning training. Kona [22] and DM prototypes [107, 149] create per-server

private regions on the memory server to allow compute servers to transparently

extend their memory capacity. While Āpta shares some common objectives,

108 Chapter 4. Āpta

it builds on top of a CXL 3.0 DM system, specializes it for FaaS, and ensures

availability in the face of server failures.

4.7 Summary

In this chapter, we have observed that upcoming CXL-based DM systems can

alleviate the communication bottlenecks of cloud-based FaaS applications but

lacks the necessary fault-tolerance to operate in a failure-prone datacenter. We

have proposed Āpta, a CXL-based DM system for maintaining FaaS objects

that provides efficient object-granular access and allows fault-tolerant caching

of objects in compute servers caches, without compromising consistency. Thus,

Āpta has showcased for the first time a fault-tolerant cloud use-case for CXL-

based coherent disaggregated memory.

5
Conclusion and future work

In this chapter, we first summarize the main contributions of this thesis. Next, we

critically analyze the design decisions presented. Finally, we explore avenues

for future work before concluding.

5.1 Summary of contributions

In Chapter 3 we motivated the need for improved DRAM reliability in modern

memory systems to cope with increasing error rates and new models of failure,

as reported in field studies. We reviewed existing mechanisms and saw that the

incremental techniques employed are not scaling well for the increased error

rates. Further, these techniques are incurring increased capacity overheads

and causing performance penalties.

We addressed these shortcomings by proposing a unique design point - Dvé.

Dvé offers higher memory reliability and performance using coherent replication

of data. Coherent replication builds on top of existing protocols to not only main-

tain the replicas in sync (as required for reliability), but also provide coherent

access to both of the replicas during common-case fault-free operation (for

improved performance). Further, Dvé can be deployed flexibly on-demand to

provide the gains, when underutilized memory capacity is available or when

required by applications.

We analytically quantified Dvé’s reliability benefit and showed that it provides

lower uncorrectable and undetectable error rate than state-of-the-art reliability

109

110 Chapter 5. Conclusion and future work

schemes. The results of our experimental evaluation showed that Dvé provides

significant performance improvements for several datacenter applications.

In Chapter 4, we motivated the need for fault-tolerance and improved perfor-

mance to execute applications from a new datacenter application paradigm -

Function-as-a-servce (FaaS). FaaS applications are by design compute server

fault-tolerant and are written as a composition of stateless, idempotent functions.

However, they are severely bottlenecked by the remote object store where the

objects (state) are maintained.

To eliminate these performance limitations, we proposed to use a CXL-based

cache-coherent disaggregated memory to hold FaaS objects. CXL enables

low-latency, high-bandwidth access to remote memory and compute server

side caching of data, but lacks the requisite level of fault-tolerance necessary

to operate at an inter-server scale within the datacenter. Our proposed de-

sign Āpta provides efficient object-granular accesses and allows fault-tolerant

consistent caching of objects in compute servers caches. Āpta’s innovation is

a novel fault-tolerant coherence protocol that removes invalidations from the

critical path and uses coherence aware scheduling to guarantee availability in

the face of server failures.

Our experimental evaluation of Āpta using representative full FaaS application

workflows showed that, compared to state-of-the-art systems, Āpta provides

highest performance and the highest availability in the presence of compute

server failures.

5.2 Critical analysis and takeaways

We now re-examine the design decisions presented in this thesis and scrutinize

them with the benefit of hindsight.

Critical analysis: While the two systems proposed achieve the goals set out

in the introduction, they however add sizeable software complexity to enable

their design. Case in point, Āpta puts the onus of correctness on the scheduler

which would now require full formal verification to validate correct behavior in

all cases; Dvé relies on the OS memory manager to map replica addresses,

5.2. Critical analysis and takeaways 111

introducing additional memory management tasks. We have demonstrated the

practicality of the designs by showing similarity to existing implementations.

Notwithstanding, these software frameworks are complex systems with several

heuristics and introducing the necessary changes would require further detailed

considerations.

Secondly, the true cost of the complexity will be evident when the system is

deployed at scale. For instance, with hundreds of co-located FaaS functions ex-

ecuting concurrently, each compute server could be requesting several objects

in parallel and might have pending invalidations due to any one of the execut-

ing functions. This could affect performance and scheduling decisions. When

scheduling subsequent functions, if the set of all objects to be accessed by the

function is unknown1, the scheduler would conservatively exclude all compute

servers which have pending invalidation-acknowledgments, causing application

executions to stall. Additionally, the scheduler itself might also hit scalability

bottlenecks when running such optimized functions with short runtime i.e., small

compute and communication latencies. Increasing the schedulers throughput

remains a challenging problem. Due to infrastructure limitations, we have not

evaluated the design at a larger scale.

In summary, the designs proposed in this thesis improved system reliability and

performance by using intelligent coherence protocols. However, adversarial

scenarios exist where providing higher reliability can still impact performance.

More importantly though, even in such worst-case scenarios, the reliability

of the proposed designs would not be any worse than the baseline designs

compared against.

Takeaways: We note a few key takeaways from the works in this thesis.

≻ Robust reliability is key for next-generation memory.

DRAM memory technologies are being specialized for various compute paradigms

(DDR, LPDDR, GDDR, HBM etc.) and each has architecture has different and

varied implications on fault models and design of reliability solutions. Dvé takes

a first step in architecting a technology agnostic, DRAM reliability solution. Sec-

ondly, with CXL-based hardware disaggregated memory, newer fault models

have come to the fore. Āpta identifies one of the possible fault models and

1The support to specify function input objects in the workflow currently exists but is optional.

112 Chapter 5. Conclusion and future work

shows a lightweight solution to this. Several more exist and more work needs

to be done to improve the RAS for such architectures.

≻ Application driven architecture.

The thesis makes the case that better computer architecture and system de-

sign can be achieved through understanding the characteristics of applications.

Dvé demonstrates that a good understanding of applications memory access

characteristics in NUMA is the raison principale for improved performance i.e.,

the ability to exploit performance by reading the replica for the read-only/read-

mostly data. Similarly, Āpta’s design was enabled by studying FaaS application

communication and execution patterns which allowed the defining of favorable

scheduling criteria. Secondly, applications paradigms for executing in the data

center have evolved to be compute server fault tolerant. Similarly, hardware

coherence protocols must advance to match this model without “blocking”.

≻ Revisiting design decisions in-step with advances in technology.

Computer architecture is heavily driven by advances in electronic and semi-

conductor technology. As evidenced with CXL, the next generation PCIe bus

in alternate protocol mode creates a new interconnect capability allowing for

coherent inter-node communication. Understanding and exploiting the capabil-

ities of this was the key cog that allowed us to design Āpta. In a similar spirit,

we would need to revisit all other techniques used in a shared memory in the

context of this increasingly decoupled, distributed hardware components e.g.,

synchronization atomics.

≻ The end-to-end arguments to system design [156] is a powerful principle to

employ for current and future system designs. Employing this approach brings

a fresh perspective to conventional problems and yields innovative solutions.

As a demonstration, DRAM error mitigation solutions over many years, have

continually employed an incremental, bottom-up approach to protect against

errors rising up in memory hierarchy. Dvé’s holistic approach allows robustly

handling a wide variety of errors arising from faults in any DRAM components.

In the same vein, CXL only specifies what the underlying interconnect can

achieve and is primarily concerned with defining its capabilities. Standards and

specifications should also strive to define application use cases to employ the

technologies prescribed. This will not only aid in accelerating adoption but also

5.3. Future work 113

create a dialogue to allow for better end-to-end system design.

≻ Complexity in system design can be a daunting challenge but can be tamed

through modularization.

Case in point, to architect an object store, the Āpta system provides a multitude

of features for DM. These features are provided through multiple independent

modules, each dedicated for a single purpose. The modules individually can

also be generalized for use in other applications currently being investigated

for CXL - persistent memory [114], memory capacity expansion [108], near

memory accelerators on CXL [70] and dynamic tiered memory [73].

To summarize, the need of high-reliability, high-performance systems has never

been greater than it is now. Equally, the array of technologies available for

designing an ideal system has never been boarder because of the rapid ad-

vances in technology, speed of processors, memory, and interconnection of

components. The true challenge therefore, is in designing a balanced system

according to Amdahl’s Law.

5.3 Future work

The design space of datacenter memory systems remains an active area of

research and there are several directions possible to advance the field. Below

we briefly discuss some potential possible avenues to explore and consider

how our ideas might be expanded to different settings.

Value-added accelerated DM: CXL-based DM is still in its nascency and sev-

eral new application use cases of such an architecture are being explored. In

these applications, various hardware-based value-added services like security,

encryption, compression etc. can be architected in hardware using the CXL

controllers on the memory server. The trend of value-added accelerated ser-

vices is already prevalent in today’s systems e.g., DRAMs perform processing

in-memory [180] and processors embedding several accelerators in core [77].

We believe that the insight presented in designing Āpta’s controllers can serve

as a useful insight in this direction.

Reliable and available DM: The discontinuation of Intel Optane devices has

114 Chapter 5. Conclusion and future work

left byte-addressable non-volatile memory (NVM) based applications to using

CXL-based DM as the only viable way to achieve data persistence. Unlike local

NVM based devices which only protected against power failure, the use of DM

for persistence automatically brings with it the property of availability i.e., the

data is accessible and consistent immediately on the failure of the compute

node. Such available persistence devices must be hardened to be reliable,

since memory servers too are susceptible to failures. Future work can involve

defining protocol actions to enable replicated DM.

Redesigning distributed co-ordination services for modern hardware: Dis-

tributed datacenter applications use several services like Kubernetes scheduler,

Chubby lock service, Zookeeper configuration service which use protocols like

Raft, ZAB etc over general purpose networks like Ethernet to provide replicated

highly-available co-ordination APIs. As datacenters adopt faster network tech-

nologies (like RDMA, CXL) and specialized hardware (like replicated reliable

memory, hardware offloading), the design of these distributed co-ordination

services needs to be revisited. Future work can investigate the efficient and

performant re-design of these services taking into account modern hardware

primitives like replicated reliable memory. We believe this thesis has paved and

taken the first step in this direction with Āpta.

Consistency-directed shared DM: This thesis explored memory sharing DM

between homogeneous CPU based servers. Going forward, we expect to see

heterogeneous systems with strong memory consistency enforcing CPUs and

relaxed memory consistency accelerators like GPUs, DPUs etc., use the shared

DM to operate collaboratively on a shared dataset in memory. Simply using

the current SWMR-based coherence protocols would be an inefficient way to

ensure memory consistency. Future work can explore efficient consistency-

directed coherence mechanisms e.g., temporal coherence in which FENCE

instructions wait/stall, rather than every writer, for invalidations to complete or

alternatively release-consistency directed coherence with special actions on

acquire and release instructions.

5.4. Concluding Remarks 115

5.4 Concluding Remarks

This thesis explored the co-design of performance and reliability for datacenter

memory. We argued that this can be achieved using well-designed coher-

ence protocols. To support this claim, we built two designs to show significant

improvements in both performance and reliability for two representative organi-

zations of memory in datacenter systems. First, using a coherence protocol for

replicating data across two processors in a NUMA system can improve DRAM

reliability and performance. Second, architecting a fault-tolerant CXL protocol

based disaggregated memory system can accelerate Function-as-a-service

applications in the datacenter.

A common underlying thread in the works presented is a holistic understanding

of the entire system, to achieve better overall designs. We foresee that the

demand for improved reliability in the datacenter will continue to grow, and

we hope that this thesis will motivate the designs of performant, reliable next

generation memory systems. .

Bibliography

[1] Konstantinos Aisopos and Li-Shiuan Peh. A systematic methodology
to develop resilient cache coherence protocols. In 2011 44th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 47–58, 2011.

[2] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. Sand: Towards
high-performance serverless computing. In Proceedings of the 2018
USENIX Conference on Usenix Annual Technical Conference, USENIX
ATC ’18, USA, 2018. USENIX Association.

[3] Amazon. AWS S3. https://aws.amazon.com/s3/.

[4] Amazon. AWS Step Functions. https://aws.amazon.com/step-
functions/.

[5] Amazon AWS. Make a lambda function idempotent. https:
//aws.amazon.com/premiumsupport/knowledge-center/lambda-
function-idempotent/.

[6] AMD. KDG for AMD NPT Family 0Fh Processors, 2009.

[7] AMD. KDG for AMD Family 15h Models 00h-0Fh Processors, 2013.

[8] Andy Rudoff, Intel Corporation. Persistent memory on cxl. https:
//www.snia.org/educational-library/persistent-memory-cxl-2021,
2021.

[9] ARM HPC. arm-hpc/comd. https://github.com/arm-hpc/CoMD.

[10] Amazon AWS. Elastic fabric adapter. https://aws.amazon.com/hpc/
efa/.

[11] Amazon AWS. Error handling and automatic retries in aws lambda.
https://docs.aws.amazon.com/lambda/latest/dg/invocation-
retries.html.

[12] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Krishan Kumar Attre,
Paramvir Bahl, Ameya Bhagat, Gowri Bhaskara, Tanya Brokhman, Lei
Cao, Ahmad Cheema, Rebecca Chow, Jeff Cohen, Mahmoud Elhaddad,
Vivek Ette, Igal Figlin, Daniel Firestone, Mathew George, Ilya German,
Lakhmeet Ghai, Eric Green, Albert Greenberg, Manish Gupta, Randy
Haagens, Matthew Hendel, Ridwan Howlader, Neetha John, Julia John-
stone, Tom Jolly, Greg Kramer, David Kruse, Ankit Kumar, Erica Lan, Ivan
Lee, Avi Levy, Marina Lipshteyn, Xin Liu, Chen Liu, Guohan Lu, Yuemin
Lu, Xiakun Lu, Vadim Makhervaks, Ulad Malashanka, David A. Maltz, Il-

117

https://aws.amazon.com/s3/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://www.snia.org/educational-library/persistent-memory-cxl-2021
https://www.snia.org/educational-library/persistent-memory-cxl-2021
https://github.com/arm-hpc/CoMD
https://aws.amazon.com/hpc/efa/
https://aws.amazon.com/hpc/efa/
https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html

118 Bibliography

ias Marinos, Rohan Mehta, Sharda Murthi, Anup Namdhari, Aaron Ogus,
Jitendra Padhye, Madhav Pandya, Douglas Phillips, Adrian Power, Suraj
Puri, Shachar Raindel, Jordan Rhee, Anthony Russo, Maneesh Sah, Ali
Sheriff, Chris Sparacino, Ashutosh Srivastava, Weixiang Sun, Nick Swan-
son, Fuhou Tian, Lukasz Tomczyk, Vamsi Vadlamuri, Alec Wolman, Ying
Xie, Joyce Yom, Lihua Yuan, Yanzhao Zhang, and Brian Zill. Empowering
azure storage with RDMA. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages 49–67, Boston,
MA, April 2023. USENIX Association.

[13] Rajeev Balasubramonian. Innovations in the Memory System. Synthesis
Lectures on Computer Architecture. Morgan & Claypool Publishers, 2019.

[14] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. The
Datacenter as a Computer: Designing Warehouse-Scale Machines, Third
Edition. Synthesis Lectures on Computer Architecture. Morgan & Clay-
pool Publishers, 2018.

[15] S. Basu and J. Torrellas. Enhancing memory use in simple coma: Multi-
plexed simple coma. In HPCA, 1998.

[16] L. Bautista-Gomez, F. Zyulkyarov, O. Unsal, and S. McIntosh-Smith. Un-
protected computing: A large-scale study of dram raw error rate on a
supercomputer. In SC, 2016.

[17] Majed Valad Beigi, Yi Cao, Sudhanva Gurumurthi, Charles Recchia, An-
drew Walton, and Vilas Sridharan. A systematic study of ddr4 dram faults
in the field. In 2023 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 991–1002, 2023.

[18] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, January 2011.

[19] Richard E. Blahut. Algebraic Codes for Data Transmission. Cambridge
University Press, 2003.

[20] Spyros Blanas. Near data computing from a database systems
perspective. https://www.sigarch.org/near-data-computing-from-
a-database-systems-perspective.

[21] James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully, Bern-
hard Kragl, Seth Markle, Kyle Sauri, Drew Schleit, Grant Slatton, Serdar
Tasiran, Jacob Van Geffen, and Andrew Warfield. Using lightweight for-
mal methods to validate a key-value storage node in amazon s3. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles, SOSP ’21, New York, NY, USA, 2021. Association for
Computing Machinery.

https://www.sigarch.org/near-data-computing-from-a-database-systems-perspective
https://www.sigarch.org/near-data-computing-from-a-database-systems-perspective

Bibliography 119

[22] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al
Maruf, Onur Mutlu, and Aasheesh Kolli. Rethinking software runtimes for
disaggregated memory. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, New York, NY, USA, 2021. Association for Comput-
ing Machinery.

[23] J. F. Cantin, M. H. Lipasti, and J. E. Smith. Improving multiprocessor
performance with coarse-grain coherence tracking. In ISCA, 2005.

[24] CCIX consortium. http://www.ccixconsortium.com.

[25] S. Cha, O. Seongil, H. Shin, S. Hwang, K. Park, S. J. Jang, J. S. Choi,
G. Y. Jin, Y. H. Son, H. Cho, J. H. Ahn, and N. S. Kim. Defect analysis and
cost-effective resilience architecture for future dram devices. In HPCA,
2017.

[26] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaf-
fer, Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for
heterogeneous computing. In IISWC, 2009.

[27] Hsing-Min Chen, Carole-Jean Wu, Trevor Mudge, and Chaitali
Chakrabarti. Ratt-ecc: Rate adaptive two-tiered error correction codes for
reliable 3d die-stacked memory. ACM Trans. Archit. Code Optim., 13(3),
September 2016.

[28] L. Chen and Z. Zhang. Memguard: A low cost and energy efficient design
to support and enhance memory system reliability. In ISCA, 2014.

[29] W. Chen, K. Ye, Y. Wang, G. Xu, and C. Xu. How does the workload look
like in production cloud? analysis and clustering of workloads on alibaba
cluster trace. In 2018 IEEE 24th International Conference on Parallel and
Distributed Systems (ICPADS), 2018.

[30] R. Chien. Cyclic decoding procedures for bose- chaudhuri-hocquenghem
codes. IEEE Transactions on Information Theory, 10(4):357–363, 1964.

[31] C. Chou, A. Jaleel, and M. K. Qureshi. Candy: Enabling coherent dram
caches for multi-node systems. In MICRO, 2016.

[32] Google Cloud. Retrying event-driven functions. https://
cloud.google.com/functions/docs/bestpractices/retries.

[33] Compute Express Link. https://www.computeexpresslink.org/.

[34] Compute Express Link 3.0 Specification. https://bit.ly/cxl3-
specification, August 2022.

[35] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Podstawski,
and Torsten Hoefler. Sebs: A serverless benchmark suite for function-as-
a-service computing. In Proceedings of the 22nd International Middle-

http://www.ccixconsortium.com
https://cloud.google.com/functions/docs/bestpractices/retries
https://cloud.google.com/functions/docs/bestpractices/retries
https://www.computeexpresslink.org/
https://bit.ly/cxl3-specification
https://bit.ly/cxl3-specification

120 Bibliography

ware Conference, Middleware ’21. Association for Computing Machinery,
2021.

[36] Alexandras Daglis, Dmitrii Ustiugov, Stanko Novaković, Edouard Bugnion,
Babak Falsafi, and Boris Grot. Sabres: Atomic object reads for in-memory
rack-scale computing. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1–13, 2016.

[37] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud,
Renaud Lachaize, Baptiste Lepers, Vivien Quema, and Mark Roth. Traf-
fic management: A holistic approach to memory placement on numa
systems. In ASPLOS, 2013.

[38] Dave McCracken, IBM. Object-based reverse mapping. https://
landley.net/kdocs/ols/2004/ols2004v2-pages-71-74.pdf.

[39] Catello Di Martino, Zbigniew Kalbarczyk, Ravishankar K. Iyer, Fabio Bac-
canico, Joseph Fullop, and William Kramer. Lessons learned from the
analysis of system failures at petascale: The case of blue waters. In
2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, 2014.

[40] David L. Dill. The murphi verification system. In Proceedings of the 8th
International Conference on Computer Aided Verification, CAV ’96, Berlin,
Heidelberg, 1996. Springer-Verlag.

[41] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and Orion
Hodson. FaRM: Fast remote memory. In 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 14), Seattle, WA,
April 2014. USENIX Association.

[42] Ulrich Drepper. What every programmer should know about memory.
https://lwn.net/Articles/255364/, October 2007.

[43] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson,
Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart, Larry Landwe-
ber, Chip Elliott, Michael Zink, Emmanuel Cecchet, Snigdhaswin Kar, and
Prabodh Mishra. The design and operation of cloudlab. In Proceedings of
the 2019 USENIX Conference on Usenix Annual Technical Conference,
USENIX ATC ’19. USENIX Association, 2019.

[44] Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger,
Johannes Grohmann, Nikolas Herbst, Cristina L Abad, and Alexandru
Iosup. A review of serverless use cases and their characteristics. https:
//arxiv.org/pdf/2008.11110.pdf, 2021.

[45] Ricardo Fernandez-Pascual, Jose M. Garcia, Manuel E. Acacio, and Jose
Duato. A low overhead fault tolerant coherence protocol for cmp architec-

https://landley.net/kdocs/ols/2004/ols2004v2-pages-71-74.pdf
https://landley.net/kdocs/ols/2004/ols2004v2-pages-71-74.pdf
https://lwn.net/Articles/255364/
https://arxiv.org/pdf/2008.11110.pdf
https://arxiv.org/pdf/2008.11110.pdf

Bibliography 121

tures. In 2007 IEEE 13th International Symposium on High Performance
Computer Architecture, pages 157–168, 2007.

[46] Ricardo Fernandez-Pascual, Jose M. Garcia, Manuel E. Acacio, and Jose
Duato. A fault-tolerant directory-based cache coherence protocol for cmp
architectures. In 2008 IEEE International Conference on Dependable
Systems and Networks With FTCS and DCC (DSN), pages 267–276,
2008.

[47] Moritz Fieback. Dram reliability: Aging analysis and reliability predic-
tion model. https://repository.tudelft.nl/islandora/object/uuid:
e36c2de7-a8d3-4dfa-9da1-ac5b7e18614b, 2017.

[48] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou,
Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian
Caulfield, Eric Chung, Harish Kumar Chandrappa, Somesh Chaturmohta,
Matt Humphrey, Jack Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov,
Jitu Padhye, Gautham Popuri, Shachar Raindel, Tejas Sapre, Mark
Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth Srivastava, Anshu-
man Verma, Qasim Zuhair, Deepak Bansal, Doug Burger, Kushagra Vaid,
David A. Maltz, and Albert Greenberg. Azure accelerated networking:
SmartNICs in the public cloud. In 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 18), Renton, WA,
April 2018. USENIX Association.

[49] G. Forney. On decoding bch codes. IEEE Transactions on Information
Theory, 11(4):549–557, 1965.

[50] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee,
Christos Kozyrakis, Matei Zaharia, and Keith Winstein. From laptop to
lambda: Outsourcing everyday jobs to thousands of transient functional
containers. In 2019 USENIX Annual Technical Conference (USENIX ATC
19), pages 475–488, Renton, WA, July 2019. USENIX Association.

[51] Alexander Fuerst and Prateek Sharma. Faascache: Keeping serverless
computing alive with greedy-dual caching. In Proceedings of the 26th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2021, New York, NY, USA,
2021. Association for Computing Machinery.

[52] Azure Functions. Azure functions error handling and retries.
https://docs.microsoft.com/en-us/azure/azure-functions/
functions-bindings-error-pages.

[53] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi, Pengcheng Zhang,
Wenwen Peng, Bo Li, Yaohui Wu, Shaozong Liu, Lei Yan, Fei Feng,
Yan Zhuang, Fan Liu, Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu,
Zheng Cao, Chen Tian, Jinbo Wu, Jiaji Zhu, Haiyong Wang, Dennis Cai,
and Jiesheng Wu. When cloud storage meets RDMA. In 18th USENIX

https://repository.tudelft.nl/islandora/object/uuid:e36c2de7-a8d3-4dfa-9da1-ac5b7e18614b
https://repository.tudelft.nl/islandora/object/uuid:e36c2de7-a8d3-4dfa-9da1-ac5b7e18614b
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-error-pages
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-error-pages

122 Bibliography

Symposium on Networked Systems Design and Implementation (NSDI
21), pages 519–533. USENIX Association, April 2021.

[54] Vasilis Gavrielatos, Antonios Katsarakis, Arpit Joshi, Nicolai Oswald,
Boris Grot, and Vijay Nagarajan. Scale-out ccnuma: Exploiting skew with
strongly consistent caching. In Proceedings of the Thirteenth EuroSys
Conference, EuroSys ’18, New York, NY, USA, 2018. Association for
Computing Machinery.

[55] Gen-Z consortium. http://genzconsortium.org.

[56] Gen-Z consortium. ZMMU and Memory Interleave. https:
//genzconsortium.org/wp-content/uploads/2018/05/Gen-Z-MMU-
and-Memory-Interleave.pdf.

[57] S. Gong, J. Kim, S. Lym, M. Sullivan, H. David, and M. Erez. Duo:
Exposing on-chip redundancy to rank-level ecc for high reliability. In
HPCA, 2018.

[58] James R. Goodman. Using cache memory to reduce processor-memory
traffic. In Proceedings of the 10th Annual International Symposium on
Computer Architecture, ISCA ’83, page 124–131, New York, NY, USA,
1983. Association for Computing Machinery.

[59] Google. Cloud object storage. https://cloud.google.com/storage.

[60] Google. Google Cloud Workflows. https://cloud.google.com/
workflows.

[61] Google Cloud Functions. Retrying event-driven functions. https://
cloud.google.com/functions/docs/bestpractices/retries.

[62] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo Jung.
Direct access, High-Performance memory disaggregation with DirectCXL.
In 2022 USENIX Annual Technical Conference (USENIX ATC 22), pages
287–294, Carlsbad, CA, July 2022. USENIX Association.

[63] Graph500. github/graph500. https://github.com/graph500/graph500.

[64] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G. Shin. Efficient memory disaggregation with infiniswap. In
Proceedings of the 14th USENIX Conference on Networked Systems
Design and Implementation, NSDI’17, USA, 2017. USENIX Association.

[65] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiying Zhang.
Clio: A hardware-software co-designed disaggregated memory system.
In Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
2022, New York, NY, USA, 2022. Association for Computing Machinery.

http://genzconsortium.org
https://genzconsortium.org/wp-content/uploads/2018/05/Gen-Z-MMU-and-Memory-Interleave.pdf
https://genzconsortium.org/wp-content/uploads/2018/05/Gen-Z-MMU-and-Memory-Interleave.pdf
https://genzconsortium.org/wp-content/uploads/2018/05/Gen-Z-MMU-and-Memory-Interleave.pdf
https://cloud.google.com/storage
https://cloud.google.com/workflows
https://cloud.google.com/workflows
https://cloud.google.com/functions/docs/bestpractices/retries
https://cloud.google.com/functions/docs/bestpractices/retries
https://github.com/graph500/graph500

Bibliography 123

[66] Siddharth Gupta, Alexandros Daglis, and Babak Falsafi. Distributed
logless atomic durability with persistent memory. In Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO ’52. Association for Computing Machinery, 2019.

[67] Yuchen Hao, Zhenman Fang, Glenn Reinman, and Jason Cong. Support-
ing address translation for accelerator-centric architectures. In 2017 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2017.

[68] HP. Advanced memory protection technologies, technology brief,
5th edition. ftp://ftp.hp.com/pub/c-products/servers/options/
c00256943.pdf.

[69] C. Huang, R. Kumar, M. Elver, B. Grot, and V. Nagarajan. C3d: Mitigating
the numa bottleneck via coherent dram caches. In MICRO, 2016.

[70] Wenqin Huangfu, Krishna T. Malladi, Andrew Chang, and Yuan Xie. Bea-
con: Scalable near-data-processing accelerators for genome analysis
near memory pool with the cxl support. In 2022 55th IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO), pages 727–743,
2022.

[71] Andy A. Hwang, Ioan A. Stefanovici, and Bianca Schroeder. Cosmic
rays don’t strike twice: Understanding the nature of dram errors and the
implications for system design. In ASPLOS, 2012.

[72] IBM. Power processor-based systems ras, june 27th, 2019. https:
//www.ibm.com/downloads/cas/2RJYYJML.

[73] MemVerge Inc. Memverge unveils first software-defined cxl mem-
ory. https://memverge.com/memverge-unveils-first-software-
defined-cxl-memory-applications-to-support-4th-gen-amd-epyc-
processors/.

[74] Intel. Address range partial memory mirroring. https:
//software.intel.com/content/www/us/en/develop/articles/
address-range-partial-memory-mirroring.html and https:
//01.org/lkp/blogs/tonyluck/2016/address-range-partial-
memory-mirroring-linux and https://www.intel.com/content/
dam/develop/external/us/en/documents/memory-address-range-
mirroring-validation-guide-556975.pdf.

[75] Intel. Intel Architecture ISA. https://software.intel.com/sites/
default/files/managed/c5/15/architecture-instruction-set-
extensions-programming-reference.pdf.

[76] Intel. Boost pandas, scikit-learn, and TensorFlow Performance. https://
www.intel.com/content/www/us/en/developer/articles/technical/
code-changes-boost-pandas-scikit-learn-tensorflow.html, 2021.

ftp://ftp.hp.com/pub/c-products/servers/options/c00256943.pdf
ftp://ftp.hp.com/pub/c-products/servers/options/c00256943.pdf
https://www.ibm.com/downloads/cas/2RJYYJML
https://www.ibm.com/downloads/cas/2RJYYJML
https://memverge.com/memverge-unveils-first-software-defined-cxl-memory-applications-to-support-4th-gen-amd-epyc-processors/
https://memverge.com/memverge-unveils-first-software-defined-cxl-memory-applications-to-support-4th-gen-amd-epyc-processors/
https://memverge.com/memverge-unveils-first-software-defined-cxl-memory-applications-to-support-4th-gen-amd-epyc-processors/
https://software.intel.com/content/www/us/en/develop/articles/address-range-partial-memory-mirroring.html
https://software.intel.com/content/www/us/en/develop/articles/address-range-partial-memory-mirroring.html
https://software.intel.com/content/www/us/en/develop/articles/address-range-partial-memory-mirroring.html
https://01.org/lkp/blogs/tonyluck/2016/address-range-partial-memory-mirroring-linux
https://01.org/lkp/blogs/tonyluck/2016/address-range-partial-memory-mirroring-linux
https://01.org/lkp/blogs/tonyluck/2016/address-range-partial-memory-mirroring-linux
https://www.intel.com/content/dam/develop/external/us/en/documents/memory-address-range-mirroring-validation-guide-556975.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/memory-address-range-mirroring-validation-guide-556975.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/memory-address-range-mirroring-validation-guide-556975.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/code-changes-boost-pandas-scikit-learn-tensorflow.html
https://www.intel.com/content/www/us/en/developer/articles/technical/code-changes-boost-pandas-scikit-learn-tensorflow.html
https://www.intel.com/content/www/us/en/developer/articles/technical/code-changes-boost-pandas-scikit-learn-tensorflow.html

124 Bibliography

[77] Intel. Intel Xeon Scalable processors featuring Accelerator En-
gines. https://www.intel.co.uk/content/www/uk/en/products/docs/
accelerator-engines/overview.html, 2023.

[78] Intel+Facebook. Intel and Facebook Accelerate PyTorch Perfor-
mance. https://community.intel.com/t5/Blogs/Tech-Innovation/
Artificial-Intelligence-AI/Intel-and-Facebook-Accelerate-
PyTorch-Performance-with-3rd-Gen/post/1335659.

[79] Intel+Google. Intel collaborating with Google to optimize TensorFlow.
https://www.intel.com/content/www/us/en/developer/articles/
news/leverage-deep-learning-optimizations-tensorflow.html.

[80] Open Fabrics Interface. Libfabric. https://ofiwg.github.io/
libfabric/ and https://github.com/aws/libfabric.

[81] Engin Ipek, Jeremy Condit, Edmund B. Nightingale, Doug Burger, and
Thomas Moscibroda. Dynamically replicated memory: Building reliable
systems from nanoscale resistive memories. In ASPLOS, 2010.

[82] Maya Gokhale Ivy Peng, Roger Pearce. On the memory underutilization:
Exploring disaggregated memory on hpc systems. In 2020 32st Inter-
national Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD), 2020.

[83] JEDEC. DDR5 SDRAM - JESD79-5B, August 2022.

[84] H. Jeon, G. H. Loh, and M. Annavaram. Efficient ras support for die-
stacked dram. In 2014 International Test Conference, 2014.

[85] S. Jha, V. Formicola, C. D. Martino, M. Dalton, W. T. Kramer, Z. Kalbar-
czyk, and R. K. Iyer. Resiliency of hpc interconnects: A case study of
interconnect failures and recovery in blue waters. IEEE Transactions on
Dependable and Secure Computing, 15(6):915–930, Nov 2018.

[86] X. Jian, N. DeBardeleben, S. Blanchard, V. Sridharan, and R. Kumar.
Analyzing reliability of memory sub-systems with double-chipkill detec-
t/correct. In 2013 IEEE 19th Pacific Rim International Symposium on
Dependable Computing, 2013.

[87] X. Jian, H. Duwe, J. Sartori, V. Sridharan, and R. Kumar. Low-power,
low-storage-overhead chipkill correct via multi-line error correction. In
SC, 2013.

[88] X. Jian and R. Kumar. Adaptive reliability chipkill correct (arcc). In HPCA,
2013.

[89] X. Jian, V. Sridharan, and R. Kumar. Parity helix: Efficient protection
for single-dimensional faults in multi-dimensional memory systems. In
HPCA, 2016.

https://www.intel.co.uk/content/www/uk/en/products/docs/accelerator-engines/overview.html
https://www.intel.co.uk/content/www/uk/en/products/docs/accelerator-engines/overview.html
https://community.intel.com/t5/Blogs/Tech-Innovation/Artificial-Intelligence-AI/Intel-and-Facebook-Accelerate-PyTorch-Performance-with-3rd-Gen/post/1335659
https://community.intel.com/t5/Blogs/Tech-Innovation/Artificial-Intelligence-AI/Intel-and-Facebook-Accelerate-PyTorch-Performance-with-3rd-Gen/post/1335659
https://community.intel.com/t5/Blogs/Tech-Innovation/Artificial-Intelligence-AI/Intel-and-Facebook-Accelerate-PyTorch-Performance-with-3rd-Gen/post/1335659
https://www.intel.com/content/www/us/en/developer/articles/news/leverage-deep-learning-optimizations-tensorflow.html
https://www.intel.com/content/www/us/en/developer/articles/news/leverage-deep-learning-optimizations-tensorflow.html
https://ofiwg.github.io/libfabric/
https://ofiwg.github.io/libfabric/
https://github.com/aws/libfabric

Bibliography 125

[90] I-Jui Sung John A. Stratton, Christopher Rodrigues, Nady Obeid, Li-Wen
Chang, Nasser Anssari, Geng Daniel Liu, and Wen mei W. Hwu. Par-
boil: A revised benchmark suite for scientificand commercial throughput
computing. IMPACT-12-01, March 2012.

[91] Stefan Kaestle, Reto Achermann, Timothy Roscoe, and Tim Harris.
Shoal: Smart allocation and replication of memory for parallel programs.
In 2015 USENIX Annual Technical Conference (USENIX ATC 15), 2015.

[92] M. R. Siavash Katebzadeh, Paolo Costa, and Boris Grot. Evaluation of
an infiniband switch: Choose latency or bandwidth, but not both. In 2020
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2020.

[93] Antonios Katsarakis, Vasilis Gavrielatos, M.R. Siavash Katebzadeh, Arpit
Joshi, Aleksandar Dragojevic, Boris Grot, and Vijay Nagarajan. Her-
mes: A Fast, Fault-Tolerant and Linearizable Replication Protocol, page
201–217. Association for Computing Machinery, New York, NY, USA,
2020.

[94] J. Kim, M. Sullivan, and M. Erez. Bamboo ecc: Strong, safe, and flexible
codes for reliable computer memory. In HPCA, 2015.

[95] J. Kim, M. Sullivan, S. Lym, and M. Erez. All-inclusive ecc: Thorough
end-to-end protection for reliable computer memory. In ISCA, 2016.

[96] Jeongchul Kim and Kyungyong Lee. Practical cloud workloads for server-
less faas. In Proceedings of the ACM Symposium on Cloud Computing,
SoCC ’19. Association for Computing Machinery, 2019.

[97] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in mem-
ory without accessing them: An experimental study of dram disturbance
errors. In ISCA, 2014.

[98] Vamsee Reddy Kommareddy, Simon David Hammond, Clayton Hughes,
Ahmad Samih, and Amro Awad. Page migration support for disaggre-
gated non-volatile memories. In Proceedings of the International Sym-
posium on Memory Systems, MEMSYS ’19, New York, NY, USA, 2019.
Association for Computing Machinery.

[99] Vamsee Reddy Kommareddy, Clayton Hughes, Simon David Hammond,
and Amro Awad. Deact: Architecture-aware virtual memory support for
fabric attached memory systems. In 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), 2021.

[100] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and Arkaprava Basu.
Faastlane: Accelerating function-as-a-service workflows. In 2020
USENIX Annual Technical Conference (USENIX ATC 21), 2021.

126 Bibliography

[101] Kubernetes. Production-Grade Container Orchestration. https://
kubernetes.io/.

[102] Leslie Lamport. Using time instead of timeout for fault-tolerant distributed
systems. ACM Trans. Program. Lang. Syst., 6(2):254–280, apr 1984.

[103] L. A. Lastras-Montaño, P. J. Meaney, E. Stephens, B. M. Trager,
J. O’Connor, and L. C. Alves. A new class of array codes for mem-
ory storage. In 2011 Information Theory and Applications Workshop,
2011.

[104] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and
O. Mutlu. Adaptive-latency dram: Optimizing dram timing for the common-
case. In HPCA, 2015.

[105] Seung-seob Lee, Yanpeng Yu, Yupeng Tang, Anurag Khandelwal, Lin
Zhong, and Abhishek Bhattacharjee. Mind: In-network memory man-
agement for disaggregated data centers. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles, SOSP ’21,
New York, NY, USA, 2021. Association for Computing Machinery.

[106] Larry Leemis. Probability models and statistical methods in reliability.
Department of Mathematics, College of William and Mary, 2000.

[107] Huaicheng Li, Daniel S. Berger, Stanko Novakovic, Lisa Hsu, Dan Ernst,
Pantea Zardoshti, Monish Shah, Ishwar Agarwal, Mark Hill, Marcus Fon-
toura, and Ricardo Bianchini. First-generation memory disaggregation
for cloud platforms. In arxiv, 2021.

[108] Huaicheng Li, Daniel S Berger, Stanko Novakovic, Lisa Hsu, Dan Ernst,
Pantea Zardoshti, Monish Shah, Samir Rajadnya, Scott Lee, and Ishwar
Agarwal. Pond: Cxl-based memory pooling systems for cloud platforms.
In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, New York,
NY, USA, 2023. Association for Computing Machinery.

[109] Qian Li and Christos Kozyrakis. Thousand island scanner (THIS): Scaling
video analysis on AWS lambda. https://github.com/qianl15/this.

[110] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan,
Steven K. Reinhardt, and Thomas F. Wenisch. Disaggregated memory
for expansion and sharing in blade servers. In Proceedings of the 36th
Annual International Symposium on Computer Architecture, ISCA ’09,
New York, NY, USA, 2009. Association for Computing Machinery.

[111] David Liu, Amit Levy, Shadi Noghabi, and Sebastian Burckhardt. Doing
more with less:orchestrating serverless applications without an orches-
trator. In Proceedings of the 20th USENIX Conference on Networked
Systems Design and Implementation, NSDI’23, USA, 2023. USENIX
Association.

https://kubernetes.io/
https://kubernetes.io/
https://github.com/qianl15/this

Bibliography 127

[112] S. Liu, B. Leung, A. Neckar, S. O. Memik, G. Memik, and N. Hardavellas.
Hardware/software techniques for dram thermal management. In HPCA,
2011.

[113] C. Lu, K. Ye, G. Xu, C. Xu, and T. Bai. Imbalance in the cloud: An analysis
on alibaba cluster trace. In 2017 IEEE International Conference on Big
Data (Big Data), pages 2884–2892, 2017.

[114] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Cache-coherent accel-
erators for persistent memory crash consistency. In 2022 Workshop on
Hot Topics in Storage and File Systems (HotStorage 17), 2022.

[115] Taras Lykhenko, Rafael Soares, and Luis Rodrigues. Faastcc: Efficient
transactional causal consistency for serverless computing. In Proceed-
ings of the 22nd International Middleware Conference, Middleware ’21,
page 159–171, New York, NY, USA, 2021. Association for Computing
Machinery.

[116] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Eshaan
Minocha, Sameh Elnikety, Saurabh Bagchi, and Somali Chaterji.
Wisefuse: Workload characterization and dag transformation for server-
less workflows. Proc. ACM Meas. Anal. Comput. Syst., 6(2), jun 2022.

[117] Pascal Maissen, Pascal Felber, Peter Kropf, and Valerio Schiavoni. Faas-
dom: A benchmark suite for serverless computing. In Proceedings of
the 14th ACM International Conference on Distributed and Event-Based
Systems, DEBS ’20, page 73–84, New York, NY, USA, 2020. Association
for Computing Machinery.

[118] G. Mappouras, A. Vahid, R. Calderbank, D. R. Hower, and D. J. Sorin.
Jenga: Efficient fault tolerance for stacked dram. In ICCD, 2017.

[119] P. J. Meaney, L. A. Lastras-Montano, V. K. Papazova, E. Stephens, J. S.
Johnson, L. C. Alves, J. A. O’Connor, and W. J. Clarke. Ibm zenterprise
redundant array of independent memory subsystem. IBM Journal of
Research and Development, 56(1.2), Jan 2012.

[120] Mellanox Technologies . ConnectX-3 VPI Single and Dual QSFP+
Port Adapter Card User Manua. https://network.nvidia.com/
pdf/user_manuals/ConnectX-3%20VPI_Single_and_Dual_QSFP+
_Port_Adapter_Card_User_Manual.pdf.

[121] Memcached. Memcached internals for end users. https:
//github.com/memcached/memcached/wiki/UserInternals#how-much-
memory-will-an-item-use.

[122] J. Meza, Q. Wu, S. Kumar, and O. Mutlu. Revisiting memory errors in
large-scale production data centers: Analysis and modeling of new trends
from the field. In 2015 45th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, June 2015.

https://network.nvidia.com/pdf/user_manuals/ConnectX-3%20VPI_Single_and_Dual_QSFP+_Port_Adapter_Card_User_Manual.pdf
https://network.nvidia.com/pdf/user_manuals/ConnectX-3%20VPI_Single_and_Dual_QSFP+_Port_Adapter_Card_User_Manual.pdf
https://network.nvidia.com/pdf/user_manuals/ConnectX-3%20VPI_Single_and_Dual_QSFP+_Port_Adapter_Card_User_Manual.pdf
https://github.com/memcached/memcached/wiki/UserInternals#how-much-memory-will-an-item-use
https://github.com/memcached/memcached/wiki/UserInternals#how-much-memory-will-an-item-use
https://github.com/memcached/memcached/wiki/UserInternals#how-much-memory-will-an-item-use

128 Bibliography

[123] Micron. DDR4 SDRAM Datasheet. https://www.micron.com/-/
media/client/global/documents/products/data-sheet/dram/ddr4/
8gb_ddr4_sdram.pdf.

[124] Micron. DDR5 SDRAM Whitepaper. https://www.micron.com/
-/media/client/global/documents/products/white-paper/
ddr5_more_than_a_generational_update_wp.pdf.

[125] Micron. Technical note: Uprating semiconductors for high-temperature
applications. http://notes-application.abcelectronique.com/024/
24-20035.pdf.

[126] Microsoft. Temporal Platform. https://learn.microsoft.com/en-us/
azure/azure-functions/durable/.

[127] Microsoft Azure. Azure Functions Blob Access Trace 2020.
https://github.com/Azure/AzurePublicDataset/blob/master/
AzureFunctionsBlobDataset2020.md.

[128] Micrsoft. Azure Blob Storage. https://azure.microsoft.com/en-gb/
products/storage/blobs.

[129] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Using One-Sided
RDMA reads to build a fast, CPU-Efficient Key-Value store. In 2013
USENIX Annual Technical Conference (USENIX ATC 13), 2013.

[130] Y. Mori, K. Ohyu, K. Okonogi, and R.-i. Yamada. The origin of variable
retention time in dram. In IEEE InternationalElectron Devices Meeting,
2005. IEDM Technical Digest., pages 1034–1037, 2005.

[131] A. Moshovos. Regionscout: exploiting coarse grain sharing in snoop-
based coherence. In ISCA, 2005.

[132] Ireneusz Mrozek. Multi-run memory tests for pattern sensitive faults.
Springer, 2019.

[133] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale,
Stéphane Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang, Tim
Wood, Daniel Hagimont, Noël De Palma, Bernabé Batchakui, and Alain
Tchana. Ofc: An opportunistic caching system for faas platforms. In
Proceedings of the Sixteenth European Conference on Computer Sys-
tems, EuroSys ’21, New York, NY, USA, 2021. Association for Computing
Machinery.

[134] Vijay Nagarajan, Daniel J. Sorin, Mark D. Hill, and David A. Wood. A
Primer on Memory Consistency and Cache Coherence, Second Edi-
tion. Synthesis Lectures on Computer Architecture. Morgan & Claypool
Publishers, 2020.

[135] P. J. Nair, D. A. Roberts, and M. K. Qureshi. Citadel: Efficiently protecting
stacked memory from large granularity failures. In MICRO, 2014.

https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf
https://www.micron.com/-/media/client/global/documents/products/white-paper/ddr5_more_than_a_generational_update_wp.pdf
https://www.micron.com/-/media/client/global/documents/products/white-paper/ddr5_more_than_a_generational_update_wp.pdf
https://www.micron.com/-/media/client/global/documents/products/white-paper/ddr5_more_than_a_generational_update_wp.pdf
http://notes-application.abcelectronique.com/024/24-20035.pdf
http://notes-application.abcelectronique.com/024/24-20035.pdf
https://learn.microsoft.com/en-us/azure/azure-functions/durable/
https://learn.microsoft.com/en-us/azure/azure-functions/durable/
https://github.com/Azure/AzurePublicDataset/blob/master/AzureFunctionsBlobDataset2020.md
https://github.com/Azure/AzurePublicDataset/blob/master/AzureFunctionsBlobDataset2020.md
https://azure.microsoft.com/en-gb/products/storage/blobs
https://azure.microsoft.com/en-gb/products/storage/blobs

Bibliography 129

[136] P. J. Nair, V. Sridharan, and M. K. Qureshi. Xed: Exposing on-die error
detection information for strong memory reliability. In ISCA, 2016.

[137] Prashant J. Nair, Dae-Hyun Kim, and Moinuddin K. Qureshi. Archshield:
Architectural framework for assisting dram scaling by tolerating high error
rates. In ISCA, 2013.

[138] NASA Advanced Supercomputing Division. Nas parallel benchmarks.
https://www.nas.nasa.gov/publications/npb.html.

[139] Nikolaos Nikitas, Ioannis Konstantinou, Vana Kalogeraki, and Nectarios
Koziris. Cherry: A distributed task-aware shuffle service for serverless
analytics. In 2021 IEEE International Conference on Big Data (Big Data),
pages 120–130, 2021.

[140] Siddharth Nilakantan, Karthik Sangaiah, Ankit More, Giordano Salvadory,
Baris Taskin, and Mark Hempstead. Synchrotrace: synchronization-
aware architecture-agnostic traces for light-weight multicore simulation.
In 2015 IEEE International Symposium on Performance Analysis of Sys-
tems and Software (ISPASS), 2015.

[141] Vlad Nitu, Boris Teabe, Alain Tchana, Canturk Isci, and Daniel Hagimont.
Welcome to zombieland: Practical and energy-efficient memory disag-
gregation in a datacenter. In Proceedings of the Thirteenth EuroSys
Conference, EuroSys ’18, New York, NY, USA, 2018. Association for
Computing Machinery.

[142] NVIDIA. Mellanox bluefield dpu. https://www.nvidia.com/en-us/
networking/products/data-processing-unit/.

[143] OpenCAPI consortium. http://opencapi.org.

[144] Venkatesh Pallipadi and Suresh Siddha. Patting linux. 2008 Linux Sym-
posium, 2008.

[145] Gagandeep Panwar, Da Zhang, Yihan Pang, Mai Dahshan, Nathan De-
Bardeleben, Binoy Ravindran, and Xun Jian. Quantifying memory un-
derutilization in hpc systems and using it to improve performance via
architecture support. In MICRO, 2019.

[146] Adarsh Patil, Vijay Nagarajan, Rajeev Balasubramonian, and Nicolai
Oswald. Dvé: Improving dram reliability and performance on-demand
via coherent replication. In Proceedings of the 48th Annual International
Symposium on Computer Architecture, ISCA ’21, page 526–539. IEEE
Press, 2021.

[147] Adarsh Patil, Vijay Nagarajan, Nikos Nikoleris, and Nicolai Oswald. Āpta:
Fault-tolerant object-granular cxl disaggregated memory for accelerat-
ing faas. In 2023 53nd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 109–123, 2023.

https://www.nas.nasa.gov/publications/npb.html
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
http://opencapi.org

130 Bibliography

[148] Archit Patke, Haoran Qiu, Saurabh Jha, Srikumar Venugopal, Michele
Gazzetti, Christian Pinto, Zbigniew Kalbarczyk, and Ravishankar Iyer.
Evaluating hardware memory disaggregation under delay and contention.
In 2022 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), pages 1221–1227, 2022.

[149] Christian Pinto, Dimitris Syrivelis, Michele Gazzetti, Panos Koutsovasilis,
Andrea Reale, Kostas Katrinis, and H. Peter Hofstee. Thymesisflow: A
software-defined, hw/sw co-designed interconnect stack for rack-scale
memory disaggregation. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2020.

[150] M. K. Qureshi. Pay-as-you-go: Low-overhead hard-error correction for
phase change memories. In MICRO, 2011.

[151] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and
Michael A. Kozuch. Heterogeneity and dynamicity of clouds at scale:
Google trace analysis. In Proceedings of the Third ACM Symposium on
Cloud Computing (SoCC), 2012.

[152] Microsoft Research. Rdma for cloud computing. https:
//www.microsoft.com/en-us/research/project/rdma-for-cloud-
computing/publications/.

[153] Restle, Park, and Lloyd. Dram variable retention time. In 1992 Inter-
national Technical Digest on Electron Devices Meeting, pages 807–810,
1992.

[154] Robert Blankenship, Intel Corporation. CXL 1.1 Protocol Ex-
tensions: Review of the Cache and Memory Protocols in CXL.
https://www.snia.org/educational-library/cxl-11-protocol-
extensions-review-cache-and-memory-protocols-cxl-2020, 2020.

[155] Francisco Romero, Gohar Irfan Chaudhry, Íñigo Goiri, Pragna Gopa, Paul
Batum, Neeraja J. Yadwadkar, Rodrigo Fonseca, Christos Kozyrakis, and
Ricardo Bianchini. Faa$t: A transparent auto-scaling cache for serverless
applications. In Proceedings of the ACM Symposium on Cloud Comput-
ing, New York, NY, USA, 2021. Association for Computing Machinery.

[156] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in
system design. ACM Trans. Comput. Syst., 2(4), November 1984.

[157] Karthik Sangaiah, Michael Lui, Radhika Jagtap, Stephan Diestelhorst,
Siddharth Nilakantan, Ankit More, Baris Taskin, and Mark Hempstead.
Synchrotrace: Synchronization-aware architecture-agnostic traces for
lightweight multicore simulation of cmp and hpc workloads. ACM Trans.
Archit. Code Optim., March 2018.

https://www.microsoft.com/en-us/research/project/rdma-for-cloud-computing/publications/
https://www.microsoft.com/en-us/research/project/rdma-for-cloud-computing/publications/
https://www.microsoft.com/en-us/research/project/rdma-for-cloud-computing/publications/
https://www.snia.org/educational-library/cxl-11-protocol-extensions-review-cache-and-memory-protocols-cxl-2020
https://www.snia.org/educational-library/cxl-11-protocol-extensions-review-cache-and-memory-protocols-cxl-2020

Bibliography 131

[158] Sanghyuk Kwon, Young Hoon Son, and Jung Ho Ahn. Understanding
ddr4 in pursuit of in-dram ecc. In 2014 International SoC Design Confer-
ence (ISOCC), 2014.

[159] A. Saulsbury, T. Wilkinson, J. Carter, and A. Landin. An argument for
simple coma. In HPCA, 1995.

[160] TomsHardware Scharon Harding. Ecc memory in dram.
https://www.tomshardware.com/uk/reviews/ecc-memory-ram-
glossary-definition,6013.html.

[161] Stuart Schechter, Gabriel H. Loh, Karin Strauss, and Doug Burger. Use
ecp, not ecc, for hard failures in resistive memories. In ISCA, 2010.

[162] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. Dram
errors in the wild: A large-scale field study. SIGMETRICS Perform. Eval.
Rev., 37(1), June 2009.

[163] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. LegoOS: A
disseminated, distributed OS for hardware resource disaggregation. In
13th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 18), Carlsbad, CA, October 2018. USENIX Association.

[164] Vaishaal Shankar, Karl Krauth, Kailas Vodrahalli, Qifan Pu, Benjamin
Recht, Ion Stoica, Jonathan Ragan-Kelley, Eric Jonas, and Shivaram
Venkataraman. Serverless linear algebra. In Proceedings of the 11th
ACM Symposium on Cloud Computing, SoCC ’20, page 281–295, New
York, NY, USA, 2020. Association for Computing Machinery.

[165] Simon Shillaker and Peter Pietzuch. Faasm: Lightweight isolation for
efficient stateful serverless computing. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). USENIX Association, July 2020.

[166] Taniya Siddiqua, Athanasios E. Papathanasiou, Arijit Biswas, Sudhanva
Gurumurthi, Intel Corp, and Teradata Aster. Analysis and modeling of
memory errors from large-scale field data collection. In SELSE, 2013.

[167] Dimitrios Skarlatos, Apostolos Kokolis, Tianyin Xu, and Josep Torrellas.
Elastic cuckoo page tables: Rethinking virtual memory translation for
parallelism. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’20, page 1093–1108, New York, NY, USA, 2020.
Association for Computing Machinery.

[168] Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati, Joseph E. Gon-
zalez, Joseph M. Hellerstein, and Jose M. Faleiro. A fault-tolerance shim
for serverless computing. In Proceedings of the Fifteenth European Con-
ference on Computer Systems, EuroSys ’20, New York, NY, USA, 2020.
Association for Computing Machinery.

https://www.tomshardware.com/uk/reviews/ecc-memory-ram-glossary-definition,6013.html
https://www.tomshardware.com/uk/reviews/ecc-memory-ram-glossary-definition,6013.html

132 Bibliography

[169] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-
Smith, Joseph E. Gonzalez, Joseph M. Hellerstein, and Alexey Tumanov.
Cloudburst: Stateful functions-as-a-service. In Proceedings of VLDB
Endowment, volume 13. VLDB Endowment, jul 2020.

[170] V. Sridharan and D. Liberty. A study of dram failures in the field. In SC,
2012.

[171] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B. Ferreira,
Jon Stearley, John Shalf, and Sudhanva Gurumurthi. Memory errors in
modern systems: The good, the bad, and the ugly. In ASPLOS, 2015.

[172] Vilas Sridharan, Jon Stearley, Nathan DeBardeleben, Sean Blanchard,
and Sudhanva Gurumurthi. Feng shui of supercomputer memory: Posi-
tional effects in dram and sram faults. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, SC ’13. Association for Computing Machinery, 2013.

[173] Standard Performance Evaluation Corporation. SPEC CPU 2017. https:
//www.spec.org/cpu2017/.

[174] Meysam Taassori, Rajeev Balasubramonian, Siddhartha Chhabra,
Alaa R. Alameldeen, Manjula Peddireddy, Rajat Agarwal, and Ryan
Stutsman. Compact leakage-free support for integrity and reliability. In
ISCA, 2020.

[175] John R. Tramm, Andrew R. Siegel, Benoit Forget, and Colin Josey. Per-
formance analysis of a reduced data movement algorithm for neutron
cross section data in monte carlo simulations. In EASC 2014 - Solving
Software Challenges for Exascale, Stockholm, 2014.

[176] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz.
XSBench - the development and verification of a performance abstraction
for Monte Carlo reactor analysis. In PHYSOR 2014 - The Role of Reactor
Physics toward a Sustainable Future, Kyoto, 2014.

[177] A. N. Udipi, N. Muralimanohar, R. Balsubramonian, A. Davis, and N. P.
Jouppi. Lot-ecc: Localized and tiered reliability mechanisms for commod-
ity memory systems. In ISCA, 2012.

[178] UEFI Forum. CXL: UEFI and ACPI specification enhancement. https:
//uefi.org/node/4093.

[179] PARSEC Group Princeton University. A memo on exploration of splash-
2 input sets. https://parsec.cs.princeton.edu/doc/memo-splash2x-
input.pdf.

[180] UPMEM. True Processing In-Memory (PIM) solution. https://
www.upmem.com/technology/.

https://www.spec.org/cpu2017/
https://www.spec.org/cpu2017/
https://uefi.org/node/4093
https://uefi.org/node/4093
https://parsec.cs.princeton.edu/doc/memo-splash2x-input.pdf
https://parsec.cs.princeton.edu/doc/memo-splash2x-input.pdf
https://www.upmem.com/technology/
https://www.upmem.com/technology/

Bibliography 133

[181] Dmitrii Ustiugov, Theodor Amariucai, and Boris Grot. Analyzing tail la-
tency in serverless clouds with stellar. In Proceedings of the 2021 IEEE
International Symposium on Workload Characterization (IISWC). IEEE,
2021.

[182] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and
Boris Grot. Benchmarking, analysis, and optimization of serverless func-
tion snapshots. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Sys-
tems, New York, NY, USA, 2021. Association for Computing Machinery.

[183] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum. Op-
erating system support for improving data locality on cc-numa compute
servers. In ASPLOS, 1996.

[184] vHive Ecosystem. vSwarm - Serverless Benchmarking Suite. https:
//github.com/ease-lab/vSwarm.

[185] Carl A. Waldspurger. Memory resource management in vmware esx
server. SIGOPS Oper. Syst. Rev., page 181–194, December 2003.

[186] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas Rupprecht,
Dimitrios Skourtis, Vasily Tarasov, Feng Yan, and Yue Cheng. InfiniCache:
Exploiting ephemeral serverless functions to build a Cost-Effective mem-
ory cache. In 18th USENIX Conference on File and Storage Technologies
(FAST 20), Santa Clara, CA, February 2020. USENIX Association.

[187] Wei Wang, Jack W. Davidson, and Mary Lou Soffa. Predicting the mem-
ory bandwidth and optimal core allocations for multi-threaded applications
on large-scale numa machines. In 2016 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pages 419–431,
2016.

[188] Zixuan Wang, Joonseop Sim, Euicheol Lim, and Jishen Zhao. Enabling
efficient large-scale deep learning training with cache coherentdisag-
gregated memory systems. In 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), 2022.

[189] R. Yeleswarapu and A. K. Somani. Sscmsd - single-symbol correction
multi-symbol detection for dram subsystem. In 2018 IEEE 23rd Pacific
Rim International Symposium on Dependable Computing (PRDC), 2018.

[190] D. H. Yoon, N. Muralimanohar, J. Chang, P. Ranganathan, N. P. Jouppi,
and M. Erez. Free-p: Protecting non-volatile memory against both hard
and soft errors. In HPCA, 2011.

[191] Doe Hyun Yoon and Mattan Erez. Virtualized and flexible ecc for main
memory. In ASPLOS, 2010.

https://github.com/ease-lab/vSwarm
https://github.com/ease-lab/vSwarm

134 Bibliography

[192] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu,
Pingchao Yang, Chenggang Qin, and Haibo Chen. Characterizing server-
less platforms with serverlessbench. In Proceedings of the 11th ACM
Symposium on Cloud Computing, SoCC ’20, New York, NY, USA, 2020.
Association for Computing Machinery.

[193] Da Zhang, Vilas Sridharan, and Xun Jian. Exploring and optimizing
chipkill-correct for persistent memory based on high-density nvrams. In
MICRO, 2018.

[194] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, and
Vincent Liu. Fault-tolerant and transactional stateful serverless work-
flows. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20). USENIX Association, November 2020.

[195] Z. Zhang and J. Torrellas. Reducing remote conflict misses: Numa with
remote cache versus coma. In HPCA, 1997.

[196] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu. Mini-rank:
Adaptive dram architecture for improving memory power efficiency. In
MICRO, 2008.

[197] Tobias Ziegler, Dwarakanandan Bindiganavile Mohan, Viktor Leis, and
Carsten Binnig. Efa: A viable alternative to rdma over infiniband for
dbmss? In Proceedings of the 18th International Workshop on Data
Management on New Hardware, DaMoN ’22, New York, NY, USA, 2022.
Association for Computing Machinery.

	Introduction
	Problem discussion
	Solution direction
	Our Approach
	Coherent memory replication
	Lazy invalidation with coherence-aware scheduling

	Summary

	Background
	Memory organization
	Non-uniform memory access (NUMA)
	Hardware disaggregated memory (DM)

	Coherence protocols
	NUMA coherence
	DM coherence - CXL.mem

	DRAM overview
	DRAM fundamentals
	DRAM errors and mitigation mechanisms

	FaaS overview
	FaaS fundamentals
	Fault tolerance in FaaS

	Summary

	Dvé: Coherent replication to improve DRAM reliability and performance
	Overview
	Motivation
	Growing DRAM error rates
	Need for on-demand memory reliability

	Dvé
	Design
	Quantifying the reliability of Dvé
	System model
	Consistency and recovery semantics
	Coherent replication

	Discussion
	OS support for memory replication
	Performance caveats of Dvé

	Evaluating Dvé
	Evaluation goals
	Evaluation methodology
	Evaluation results
	Evaluation summary

	Related work
	Summary

	Āpta: Fault-tolerant CXL disaggregated memory for accelerating FaaS
	Overview
	Motivation
	The performance potential of a DM-based object store
	The lack of fault-tolerance in current DM systems
	Inefficiencies of DM for object stores

	Āpta
	Setting the stage: Designing a DM-based object store
	Fault-tolerant Coherence Protocol
	Addressing the inefficiencies of DM
	Realizing Āpta's architecture
	Putting it all together

	Evaluating Āpta
	Evaluation goals
	Evaluation methodology
	Evaluation results
	Evaluation summary

	Discussion
	Specifics of CXL support for Āpta
	Generality of proposed hardware
	FaaS scheduler deep-dive: Case study Kubernetes

	Related work
	Summary

	Conclusion and future work
	Summary of contributions
	Critical analysis and takeaways
	Future work
	Concluding Remarks

	Bibliography

